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● Natural Language Processing represents the intersection among Linguistics 
and Computer Science (and in particular the subfield of Artificial Intelligence)

○ This term refers to every technique that enables to understand and 
manipulate large amount of documents, texts and words by a computer 
software

○ In general the main goal is to improve and develop the human-machine 
communication

■ However NLP is also used to automatically analyze large amount of 
documents for Information retrieval especially nowadays with the 
advent of many internet services and platforms

What’s NLP ?
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● Speech Recognition: Given a sound clip of someone speaking, determine the 
textual representation of the speech.
○ It requires skills on signal processing (speech), acoustic modeling, Machine 

Learning for sequence modeling (Like Recurrent Neural Networks), and then 
NLP skills

NLP common tasks
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● Sentiment analysis: Extract subjective information usually from a set of 
documents, often using online reviews to determine "polarity" about specific 
objects
○ It is usually a classification task where we assign one label to each sentence: 

Usually labels are {Positive,Negative} with sometimes an additional label for 
the Neutral sentiment

● A variant is called Emotion Detection where usually psychological models are 
used to define this task as a multi-label task with several positive emotions and 
several negative emotions

NLP common tasks
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● One way to model Sentiment analysis is using a Hierarchical classifier that 
recognize emotions using smaller classifier

○ Usually a Hierarchical classifier is better than a multi-label flat 
classifier

Example: Hierarchical classifier for sentiment analysis on Facebook

● Our goal was to train an emotion 
detection system for the Italian 
language to study a patients group on 
Facebook
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● Topic segmentation and recognition: Given a chunk of text, separate it into 
segments each of which is devoted to a topic, and identify the topic of the 
segment or assign a topic to an entire document

○ Usually it is modeled as a classification task
■ Using the entire text to build a “sample” for the ML model
■ Topic modeling: Extracting the most important words (features) and 

assign the topic using this words (Information retrieval skills)

NLP common tasks
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● Image captioning: Given an image we want to generate a text that describes the 
image content

○ Generative model: We do not aim to “predict” a label or a value but we want 
to generate something new

○ It requires skills on both Computer Vision and NLP

NLP common tasks
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● Text/Document summarization: Given a document we aim to generate a shorter 
version of that document minimizing the information loss and maximizing the 
similarity between the original document and the new one.

○ It can be modeled as a subset of most meaningful sentences extraction or 
with a generative approach

NLP common tasks
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● Document Similarity: We want to recognize how similar are two or more documents

○ Information retrieval techniques are used to encode documents in a form that 
enables a similarity measure 
■ Jaccard Similarity: Ratio of common words among the two documents and 

all the union of the two documents’ words
■ Edit distance: How similar two strings are based on the number of edits 

(Insertions,deletions, substitutions) it takes to change one string into the other

NLP common tasks
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● Document Similarity: We want to recognize how similar are two or more documents

○ Neural networks can be used to perform Representation Learning of each 
document and their words to get word features vectors or document vectors: It is 
possible to compute the Cosine Similarity.

○ Uncommon but possible: Train a model to perform a regression on a similarity 
measure

NLP common tasks
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● PoS Tagging is a general task that aims to classify (or tag) each word in a text 
as corresponding to a particular part of speech. For Indo-European languages 
we distinguish 8 different elements:

○ N -> Noun (sostantivo)                     e.g.,     chair, home, dog
○ V -> Verb                                          e.g.,     study,debate,drive
○ ADJ -> Adjective                              e.g.,     purple,tall,ridiculous
○ ADV -> Adverb                                             unfortunately, slowly
○ P -> Preposition                                           of, by, to
○ Pro -> Pronoun                                             I, me, mine
○ DET -> Determiner                                       The, a, that, those
○ CONJ -> Conjuction                                     and, or

NLP Tasks: Part-of-Speech Tagging (PoS Tagging)
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● Named entity recognition is a linguistic task that involves the identification of 
proper names in text and classification into a set of predefined categories of 
interest (e.g., person, location, organisation, date-time, measures)

● It classifies also set of words

● NER can be also domain-specific (name of drugs, medical conditions, 
bibliographic references…etc)

NLP Tasks: Named Entity Recognition - NER
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● Until now the features of each sample were some characteristics that help to 
describe and distinguish each sample
○ They were usually also independent from each other (If two features are 

highly correlated we can avoid to use one of them for example)

● Sometimes our data can present another important characteristic that we 
ignored until now: sequentiality (or time)

● However for some domains this aspect is crucial:
○ Time series: A series of values of a quantity obtained at successive 

times, often with equal intervals between them

○ Natural Language Processing: The sequence of words in a sentence 
has a meaning and its important

Sequence Data
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Sliding window to analyze sequence data
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How can we extract features from a sequence ?
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Sliding window to analyze sequence data
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We define a sliding window and we extract features from each window
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Sliding window to analyze sequence data
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● We define a sliding window and we extract features from each window

○ Often with an overlapping of 50%
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Sliding window to analyze sequence data
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● We can compute statistics or apply signal 
processing techniques to manual extract 
features
○ Average, Standard Deviation, Fourier 

Transform
○ In this way, we extract the traditional 

feature x and from each window we get 
some features

○ We can apply all the algorithms already 
seen 
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Sliding window to analyze sequence data

t

● Another techniques to maintain sequentiality 
is to extract features from the window by 
sampling the signal inside.

● Each sample x(0), x(1), x(2).....x(n) will be a 
different feature of our example

● ...Are the previous models able to learn from 
a structure like this ?

Example: Window of 2300 ms with 
a sampling frequency of 100ms
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● Text can be seen as a sequence of words

● The window can be a sentence in this case and we often refers to it as the 
context

● We do not need to apply sampling as in the signal processing because our 
signal is already discrete (a list of words).

● In general, words are the features of each sample in NLP…but do we have to 
take into account each word ?

● Moreover, words are not numerical values so we need to encode words in 
some way

Text as a sequence
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Text mining

Training Set
Attribute 1 Class
• This movie is awsome POSITIVE

• I didn’t like that movie so much NEGATIVE

Test Set
Attribute 1 Class
• I really enjoyed that movie POSITIVE
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Problem: What are the features ?

Attribute 1 Class
• This movie is awsome POSITIVE

• I didn’t like that movie so much NEGATIVE

Sentence Classification

?

X1 X2 Class
4.2 1.3 Class A

4.1 1.6 Class B

.. .. ..

Classical Dataset for Classification
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The Bag-Of-Word model (BoW)

(1) John likes to watch movies.
(2) John also likes to watch football games. 

John likes to watch movies also football games Mary too

1 1 1 1 1 0 0 0 0 0

1 1 1 1 0 1 1 1 0 0

(1)

(2)

BOW with Count Value

John likes to watch movies also football games Mary too

Collect the Bag of words

Use the Bag of Words to represent the sentences with numbers

● We build a vocabulary with all of the words and encode each sentence with binary vectors
● Vectors’ size is the same of the vocabulary. Each vectors’ component is a feature
● We can group words to get more sophisticated features (N-gram)
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BoW with Python

from sklearn.feature_extraction .text 
import CountVectorizer

corpus = ['This is the first document.' , 
'This document is the second document.' , 
'And this is the third one.' , 
'Is this the first document?' ]

vectorizer = CountVectorizer() 
X = vectorizer.fit_transform(corpus)

print(vectorizer.get_feature_names ())
 
print(X.toarray())

vectorizer.get_feature_names ()

['and', 'document', 'first', 
'is', 'one', 'second', 'the', 
'third', 'this']

-----------------------------

X.toarray()

[[0 1 1 1 0 0 1 0 1]
[0 2 0 1 0 1 1 0 1]
[1 0 0 1 1 0 1 1 1]
[0 1 1 1 0 0 1 0 1]]

Output
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● Normalizing text means converting it to a more convenient, standard form

● First we want to separate out or tokenize words from running text, the task of 
tokenization
○ Words are often separated from each other by whitespace, but 

whitespace is not always sufficient
■ New York  or Rock ‘n’ roll

● We may want to consider groups of words together, the so-called N-grams

Text Normalization (or pre-processing)
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BoW with Python - Ngrams

vectorizer.get_feature_names ()

['and', 'and this', 'document', 
'document is', 'first', 'first 
document', 'is', 'is the', 'is 
this', 'one', 'second', 'second 
document', 'the', 'the first', 
'the second', 'the third', 
'third', 'third one', 'this', 
'this document', 'this is', 
'this the']

Output
...

corpus = ['This is the first document.' , 
'This document is the second document.' , 
'And this is the third one.' , 
'Is this the first document?' ]

...

CountVectorizer(ngram_range=(1,2))

...
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● The dimension of the encoding vector for each word or for each document 
depends mainly on the vocabulary size
○ This is not positive since in general a Language has 500k different words 

considering the Derivational morphology (morphology that creates new 
lexemes)

○ If we create a dictionary using only our dataset we may have the same 
problem is our dataset is big and rich
■ Computational issues and Curse of dimensionality

● While preprocessing text we should also think to a strategy to reduce the 
number of words that we take into account.

First problems of BoW
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BoW with Python - Most frequented words

Output
...

corpus = ['This is the first document.' , 
'This document is the second document.' , 
'And this is the third one.' , 
'Is this the first document?' ]

...

CountVectorizer(max_features=3)

#it takes the most frequent

...

['document', 'is', 'the'] 

vectorizer.get_feature_names (
)

X.toarray()

[[1 1 1] 
[2 1 1] 
[0 1 1] 
[1 1 1]]

● We can select a maximum number of desidered features
● Only most frequent words in the corpus are encoded
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● If we keep only most frequent words we probably will keep the most common 
words in a language that would not be useful as features to learn how to 
distinguish for example a positive or negative sentence

● We usually remove the so-called Stopwords (Most common words in a 
language) as first pre-processing task

● If stopwords have been removed we can select a max feature parameters in 
order to keep the most frequent words in our dataset (stopwords excluded)

Stopwords
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● In addition we need to perform another task that is Lemmatization: 
Determining that two words have the same root, despite their surface 
differences:
○ Sang, sung and sings are all forms of the verb sing

○ It is a complex task that requires human knowledge and often it is 
performed with an associative Map.

● Stemming refers to a simpler version of lemmatization in which we mainly 
just strip suffixes from the end of the word:
○ Beautiful, beauty —> become beaut

Lemmatization and Stemming
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● To take into account also nouns composed by multiple words we can compute 
all the possible n-grams. However it is a trade-off because we want to 
represent these nouns but at the same time we do not want that the number 
of features literally growths exponentially

● Using n-grams above 3 is not suggested for computational limits

● Sometimes multiple words should be encoded together to have a better 
representation especially for some tasks related with knowledge extraction

● An idea could be considering the structure of each sentence to distinguish 
which “role” every word or set of words have 

○ In this case Named Entity Recognition (NER) may help to detect this set 
of words

N-Grams can be expensive
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● BoW represents words as discrete symbols and it is defined as a localist 
representation
○ Indeed words are represented independently from the context, order and 

frequency with the one-hot encoding
■ And documents are represented in the same way too
■ One-hot vectors are orthogonal and thus similarity measures based 

on vectors (like Cosine similarity) cannot be used
■ One-hot vectors are not so representative if we use these vectors as 

features for ML

● Example: In web search, if user searches for “Seattle motel”, we would like to 
match documents containing “Seattle hotel” but

○ motel = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
○ hotel =  [ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]

BoW limits
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TF-IDF

● The tf–idf or TFIDF, short for Term Frequency–Inverse Document Frequency, is a numerical statistic 
that is intended to reflect how important a word is to a document in a collection or corpus.
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BoW with TF-IDF

vectorizer.get_feature_names ()

['and', 'document', 'first', 'is', 
'one', 'second', 'the', 'third', 
'this']

-----------------------------

X.toarray()

[[0. 0.46 0.58 0.38 0. 0. 0.38 0. 
0.38] 
 [0. 0.68 0. 0.28 0. 0.53 0.28 0. 
0.28]
 [...]
]

Output
from sklearn.feature_extraction .text 
import TfidfVectorizer

corpus = ['This is the first document.' , 
'This document is the second document.' , 
'And this is the third one.' , 
'Is this the first document?' ]

vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(corpus)

print(vectorizer.get_feature_names ()) 
print(X.toarray()) 
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BREAK
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● BoW is a localist representation and does not take into account several 
important factors depending on the task:
○ Words’ order in a document
○ Synonyms
○ The context
○ Orthogonality 
○ Low informative word vectors with one-hot-encoding

■ Dimension related with the dictionary size

● Using TF-IDF based BoW we solved only a part of these problems
○ Vector dimension is still problematic! No orthogonality but Curse of 

dimension still present
○ No words’ order
○ We take into account the general context of all the documents and the 

vectors are more “informative” as features rather than using only the 
one-hot BoW

Toward Distributional Semantics
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● Distributional semantics: A word’s meaning is given by the words that 
frequently appear close-by
○ “You shall know a word by the company it keeps” (J.R. Firth 1957)

● When a word p appears in a text, its context is the set of words that appear 
nearby (within a fixed-size window)

● Distributed Representation: Use the many context of w to build up (learn) a 
representation of w

    …government debt problems turning into banking crises as happened in 2009….
     ….saying that Europe needs unified banking regulation to replace the….

              …Indica has just given its banking system a shot in the arm…..

Distributional Semantics
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● What we want to build:
○ Dense vector for each word, chosen so that it is similar to vectors of words 

that appear in similar contexts ( For example: King and Queen should be 
similar since they co-occur in the same contexts)

○ Arbitrary-dimension word vectors: We want to choose dimension as a design 
parameter

○ Since these vectors should be based on the different contexts words belong 
to in our corpus (dataset) we want to learn these vectors with a data-driven 
algorithm and by solving an optimization problem

● Word vectors are called word embeddings

Distributional Semantics
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● Word2Vec is an algorithm for learning word vectors that exploits the 
Representation Learning ability of Neural Networks (NNs) (the so-called 
embedding)

● To learn these vector representation of each word w we want to take into account 
every context of surrounding words of that word (Window)

● The goal is to train a Neural Net to predict the context given a word in input (it is 
called the Skip-gram model)

● To achieve this result we should train a particular (but simple) NN that have the 
same number of input units on the output layer and with a compression layer in 
the middle

Word2Vec - Mikolov et al 2013 (Google)
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How training samples are extracted for Word2Vec
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Encoder- Decoder Architecture

● Suppose you have these sentences
○ The King is sleeping in the castle
○ The Queen is walking in the castle

● Suppose a window of context equal to 5
○ It means that for each word we consider the 5 words on the left and the 5 words on the 

right

● So if the input is King, the Neural net should learn to predict {The, is, sleeping, in, castle}

● Since the input and the output can be every word in the dictionary, input layer and output 
layer have the same dimension

● Words are encoded with one-hot encoding



 Gianfranco Lombardo, Ph.D  (gianfranco.lombardo@unipr.it)

Encoder- Decoder Architecture

The

King

    is

   in

castle

Queen

walking

The

King

    is

   in

castle

Queen

walking

Input layer
(Dimension of 
vocabulary V)

Output layer
(Dimension of 
vocabulary V)

Hidden layer 
(N° of neurons defines 
the dimension of word 
embeddings) In this 
case N=3
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Skip-gram model                {King, The}

The

King

    is

   in

castle

Queen

walking

The

King

    is

   in

castle

Queen

walking

Input layer Output layer

0
1
0
0
0
0
0

1
0
0
0
0
0
0

|V| x N matrix of 
weights

N x |V|   matrix 
of weights
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Skip-gram model                     {King, castle}

The

King

    is

   in

castle

Queen

walking

The

King

    is

   in

castle

Queen

walking

Input layer Output layer

0
1
0
0
0
0
0

0
0
0
0
1
0
0

|V| x N matrix E 
of weights

N x |V|   matrix 
C of weights
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Skip-gram model - In general



 Gianfranco Lombardo, Ph.D  (gianfranco.lombardo@unipr.it)

Skip-gram model - In general

The

King

    is

   in

castle

Queen

walking

0
1
0
0
0
0
0

The

King

    is

   in

castle

Queen

walking

0
0
0
0
1
0
0

0.3       0.5         0.1
0.01     0.1         0.8
0.1       0.25       0.4
0.8       0.5         0.5
0.9       0.5         0.1
0.2       0.5         0.1
0.11     0.2         0.3

Matrix E and in green 
the embedding for the 
word King

0.1   0.5   0.2   0.1   0.9   0.4   0.1

0.2   0.1   0.4   0.1   0.8   0.3   0.5

0.1   0.3   0.2   0.6   0.9   0.1   0.2

Matrix C that 
determines the output
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Word2Vec formally

● Every word in a fixed vocabulary has to be represented by a vector with an arbitrary dimension

● For each position t in the text (that represents the center of the context) consider to learn to 
predict the surrounding words o in the context

● Formally we are computing conditional probabilities that a word o occurs given the word at 
position t

● Keep adjusting the word vectors to maximize this probability (learning weights during training)

The       old         King       was       sleeping   

t

P(wt-1| wt)

P(wt+1| wt)

P(wt+2| wt)
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Word2Vec     Objective (cost) function

● For each position t=1…..T, predict context words within a window of fixed size m, given center 
word wj

Likelihood = L(𝛳) =

● The objective function J(𝛳) is the average negative log likelihood

● Minimizing this objective functions                     Maximizing predictive accuracy 
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● Word embeddings learnt with Doc2Vec seem to enable to a semantic algebra 
among words using their relative distances

Semantic Algebra

● It was shown for example that vector(”King”) - vector(”Man”) + vector(”Woman”) 
results in a vector that is closest to the vector representation of the word Queen
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Usually Word embedding visualization is performed using the t-SNE 
dimensionality reduction technique because it preserves the relative distances in 
the original multivariate space

Word embedding visualization
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An alternative to the Skip-gram in Word2Vec is the CBoW (Continuous 
Bag-of-words) where the Neural network is trained to predict the missing word 
given the context

Continuous Bag-of-Words
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● We saw how to learn word feature vectors but what we have to do to encode 
an entire document ?

○ We can learn word embeddings and then take the average or the sum of 
them to encode each document

○ We can learn a Document embedding with Doc2Vec

What about Documents?
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● We add a special word in the document 
with a specific id (called Paragraph ID)

● Then we say that the context of this 
special word is the entire document (all 
the words in the document)

● Learning word-embeddings we will 
learn also the embedding for the 
Paragraph ID that will be the 
embedding for the entire document

Doc2Vec - Mikolov et al 2014


