
Natural Language
Processing (NLP)

Gianfranco Lombardo, Ph.D
gianfranco.lombardo@unipr.it

DIPARTIMENTO DI INGEGNERIA E ARCHITETTURA

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Natural Language Processing represents the intersection among Linguistics
and Computer Science (and in particular the subfield of Artificial Intelligence)

○ This term refers to every technique that enables to understand and
manipulate large amount of documents, texts and words by a computer
software

○ In general the main goal is to improve and develop the human-machine
communication

■ However NLP is also used to automatically analyze large amount of
documents for Information retrieval especially nowadays with the
advent of many internet services and platforms

What’s NLP ?

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Speech Recognition: Given a sound clip of someone speaking, determine the
textual representation of the speech.
○ It requires skills on signal processing (speech), acoustic modeling, Machine

Learning for sequence modeling (Like Recurrent Neural Networks), and then
NLP skills

NLP common tasks

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Sentiment analysis: Extract subjective information usually from a set of
documents, often using online reviews to determine "polarity" about specific
objects
○ It is usually a classification task where we assign one label to each sentence:

Usually labels are {Positive,Negative} with sometimes an additional label for
the Neutral sentiment

● A variant is called Emotion Detection where usually psychological models are
used to define this task as a multi-label task with several positive emotions and
several negative emotions

NLP common tasks

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● One way to model Sentiment analysis is using a Hierarchical classifier that
recognize emotions using smaller classifier

○ Usually a Hierarchical classifier is better than a multi-label flat
classifier

Example: Hierarchical classifier for sentiment analysis on Facebook

● Our goal was to train an emotion
detection system for the Italian
language to study a patients group on
Facebook

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Topic segmentation and recognition: Given a chunk of text, separate it into
segments each of which is devoted to a topic, and identify the topic of the
segment or assign a topic to an entire document

○ Usually it is modeled as a classification task
■ Using the entire text to build a “sample” for the ML model
■ Topic modeling: Extracting the most important words (features) and

assign the topic using this words (Information retrieval skills)

NLP common tasks

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Image captioning: Given an image we want to generate a text that describes the
image content

○ Generative model: We do not aim to “predict” a label or a value but we want
to generate something new

○ It requires skills on both Computer Vision and NLP

NLP common tasks

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Text/Document summarization: Given a document we aim to generate a shorter
version of that document minimizing the information loss and maximizing the
similarity between the original document and the new one.

○ It can be modeled as a subset of most meaningful sentences extraction or
with a generative approach

NLP common tasks

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Document Similarity: We want to recognize how similar are two or more documents

○ Information retrieval techniques are used to encode documents in a form that
enables a similarity measure
■ Jaccard Similarity: Ratio of common words among the two documents and

all the union of the two documents’ words
■ Edit distance: How similar two strings are based on the number of edits

(Insertions,deletions, substitutions) it takes to change one string into the other

NLP common tasks

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Document Similarity: We want to recognize how similar are two or more documents

○ Neural networks can be used to perform Representation Learning of each
document and their words to get word features vectors or document vectors: It is
possible to compute the Cosine Similarity.

○ Uncommon but possible: Train a model to perform a regression on a similarity
measure

NLP common tasks

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● PoS Tagging is a general task that aims to classify (or tag) each word in a text
as corresponding to a particular part of speech. For Indo-European languages
we distinguish 8 different elements:

○ N -> Noun (sostantivo) e.g., chair, home, dog
○ V -> Verb e.g., study,debate,drive
○ ADJ -> Adjective e.g., purple,tall,ridiculous
○ ADV -> Adverb unfortunately, slowly
○ P -> Preposition of, by, to
○ Pro -> Pronoun I, me, mine
○ DET -> Determiner The, a, that, those
○ CONJ -> Conjuction and, or

NLP Tasks: Part-of-Speech Tagging (PoS Tagging)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Named entity recognition is a linguistic task that involves the identification of
proper names in text and classification into a set of predefined categories of
interest (e.g., person, location, organisation, date-time, measures)

● It classifies also set of words

● NER can be also domain-specific (name of drugs, medical conditions,
bibliographic references…etc)

NLP Tasks: Named Entity Recognition - NER

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Until now the features of each sample were some characteristics that help to
describe and distinguish each sample
○ They were usually also independent from each other (If two features are

highly correlated we can avoid to use one of them for example)

● Sometimes our data can present another important characteristic that we
ignored until now: sequentiality (or time)

● However for some domains this aspect is crucial:
○ Time series: A series of values of a quantity obtained at successive

times, often with equal intervals between them

○ Natural Language Processing: The sequence of words in a sentence
has a meaning and its important

Sequence Data

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Sliding window to analyze sequence data

t

M
ea

su
re

m
en

t

How can we extract features from a sequence ?

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Sliding window to analyze sequence data

t

M
ea

su
re

m
en

t

We define a sliding window and we extract features from each window

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Sliding window to analyze sequence data

t

M
ea

su
re

m
en

t

● We define a sliding window and we extract features from each window

○ Often with an overlapping of 50%

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Sliding window to analyze sequence data

t

M
ea

su
re

m
en

t

● We can compute statistics or apply signal
processing techniques to manual extract
features
○ Average, Standard Deviation, Fourier

Transform
○ In this way, we extract the traditional

feature x and from each window we get
some features

○ We can apply all the algorithms already
seen

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Sliding window to analyze sequence data

t

● Another techniques to maintain sequentiality
is to extract features from the window by
sampling the signal inside.

● Each sample x(0), x(1), x(2).....x(n) will be a
different feature of our example

● ...Are the previous models able to learn from
a structure like this ?

Example: Window of 2300 ms with
a sampling frequency of 100ms

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Text can be seen as a sequence of words

● The window can be a sentence in this case and we often refers to it as the
context

● We do not need to apply sampling as in the signal processing because our
signal is already discrete (a list of words).

● In general, words are the features of each sample in NLP…but do we have to
take into account each word ?

● Moreover, words are not numerical values so we need to encode words in
some way

Text as a sequence

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Text mining

Training Set
Attribute 1 Class
• This movie is awsome POSITIVE

• I didn’t like that movie so much NEGATIVE

Test Set
Attribute 1 Class
• I really enjoyed that movie POSITIVE

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Problem: What are the features ?

Attribute 1 Class
• This movie is awsome POSITIVE

• I didn’t like that movie so much NEGATIVE

Sentence Classification

?

X1 X2 Class
4.2 1.3 Class A

4.1 1.6 Class B

..

Classical Dataset for Classification

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

The Bag-Of-Word model (BoW)

(1) John likes to watch movies.
(2) John also likes to watch football games.

John likes to watch movies also football games Mary too

1 1 1 1 1 0 0 0 0 0

1 1 1 1 0 1 1 1 0 0

(1)

(2)

BOW with Count Value

John likes to watch movies also football games Mary too

Collect the Bag of words

Use the Bag of Words to represent the sentences with numbers

● We build a vocabulary with all of the words and encode each sentence with binary vectors
● Vectors’ size is the same of the vocabulary. Each vectors’ component is a feature
● We can group words to get more sophisticated features (N-gram)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

BoW with Python

from sklearn.feature_extraction .text
import CountVectorizer

corpus = ['This is the first document.' ,
'This document is the second document.' ,
'And this is the third one.' ,
'Is this the first document?']

vectorizer = CountVectorizer()
X = vectorizer.fit_transform(corpus)

print(vectorizer.get_feature_names ())

print(X.toarray())

vectorizer.get_feature_names ()

['and', 'document', 'first',
'is', 'one', 'second', 'the',
'third', 'this']

X.toarray()

[[0 1 1 1 0 0 1 0 1]
[0 2 0 1 0 1 1 0 1]
[1 0 0 1 1 0 1 1 1]
[0 1 1 1 0 0 1 0 1]]

Output

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Normalizing text means converting it to a more convenient, standard form

● First we want to separate out or tokenize words from running text, the task of
tokenization
○ Words are often separated from each other by whitespace, but

whitespace is not always sufficient
■ New York or Rock ‘n’ roll

● We may want to consider groups of words together, the so-called N-grams

Text Normalization (or pre-processing)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

BoW with Python - Ngrams

vectorizer.get_feature_names ()

['and', 'and this', 'document',
'document is', 'first', 'first
document', 'is', 'is the', 'is
this', 'one', 'second', 'second
document', 'the', 'the first',
'the second', 'the third',
'third', 'third one', 'this',
'this document', 'this is',
'this the']

Output
...

corpus = ['This is the first document.' ,
'This document is the second document.' ,
'And this is the third one.' ,
'Is this the first document?']

...

CountVectorizer(ngram_range=(1,2))

...

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● The dimension of the encoding vector for each word or for each document
depends mainly on the vocabulary size
○ This is not positive since in general a Language has 500k different words

considering the Derivational morphology (morphology that creates new
lexemes)

○ If we create a dictionary using only our dataset we may have the same
problem is our dataset is big and rich
■ Computational issues and Curse of dimensionality

● While preprocessing text we should also think to a strategy to reduce the
number of words that we take into account.

First problems of BoW

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

BoW with Python - Most frequented words

Output
...

corpus = ['This is the first document.' ,
'This document is the second document.' ,
'And this is the third one.' ,
'Is this the first document?']

...

CountVectorizer(max_features=3)

#it takes the most frequent

...

['document', 'is', 'the']

vectorizer.get_feature_names (
)

X.toarray()

[[1 1 1]
[2 1 1]
[0 1 1]
[1 1 1]]

● We can select a maximum number of desidered features
● Only most frequent words in the corpus are encoded

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● If we keep only most frequent words we probably will keep the most common
words in a language that would not be useful as features to learn how to
distinguish for example a positive or negative sentence

● We usually remove the so-called Stopwords (Most common words in a
language) as first pre-processing task

● If stopwords have been removed we can select a max feature parameters in
order to keep the most frequent words in our dataset (stopwords excluded)

Stopwords

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● In addition we need to perform another task that is Lemmatization:
Determining that two words have the same root, despite their surface
differences:
○ Sang, sung and sings are all forms of the verb sing

○ It is a complex task that requires human knowledge and often it is
performed with an associative Map.

● Stemming refers to a simpler version of lemmatization in which we mainly
just strip suffixes from the end of the word:
○ Beautiful, beauty —> become beaut

Lemmatization and Stemming

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● To take into account also nouns composed by multiple words we can compute
all the possible n-grams. However it is a trade-off because we want to
represent these nouns but at the same time we do not want that the number
of features literally growths exponentially

● Using n-grams above 3 is not suggested for computational limits

● Sometimes multiple words should be encoded together to have a better
representation especially for some tasks related with knowledge extraction

● An idea could be considering the structure of each sentence to distinguish
which “role” every word or set of words have

○ In this case Named Entity Recognition (NER) may help to detect this set
of words

N-Grams can be expensive

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● BoW represents words as discrete symbols and it is defined as a localist
representation
○ Indeed words are represented independently from the context, order and

frequency with the one-hot encoding
■ And documents are represented in the same way too
■ One-hot vectors are orthogonal and thus similarity measures based

on vectors (like Cosine similarity) cannot be used
■ One-hot vectors are not so representative if we use these vectors as

features for ML

● Example: In web search, if user searches for “Seattle motel”, we would like to
match documents containing “Seattle hotel” but

○ motel = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
○ hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]

BoW limits

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

TF-IDF

● The tf–idf or TFIDF, short for Term Frequency–Inverse Document Frequency, is a numerical statistic
that is intended to reflect how important a word is to a document in a collection or corpus.

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

BoW with TF-IDF

vectorizer.get_feature_names ()

['and', 'document', 'first', 'is',
'one', 'second', 'the', 'third',
'this']

X.toarray()

[[0. 0.46 0.58 0.38 0. 0. 0.38 0.
0.38]
 [0. 0.68 0. 0.28 0. 0.53 0.28 0.
0.28]
 [...]
]

Output
from sklearn.feature_extraction .text
import TfidfVectorizer

corpus = ['This is the first document.' ,
'This document is the second document.' ,
'And this is the third one.' ,
'Is this the first document?']

vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(corpus)

print(vectorizer.get_feature_names ())
print(X.toarray())

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

BREAK

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● BoW is a localist representation and does not take into account several
important factors depending on the task:
○ Words’ order in a document
○ Synonyms
○ The context
○ Orthogonality
○ Low informative word vectors with one-hot-encoding

■ Dimension related with the dictionary size

● Using TF-IDF based BoW we solved only a part of these problems
○ Vector dimension is still problematic! No orthogonality but Curse of

dimension still present
○ No words’ order
○ We take into account the general context of all the documents and the

vectors are more “informative” as features rather than using only the
one-hot BoW

Toward Distributional Semantics

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Distributional semantics: A word’s meaning is given by the words that
frequently appear close-by
○ “You shall know a word by the company it keeps” (J.R. Firth 1957)

● When a word p appears in a text, its context is the set of words that appear
nearby (within a fixed-size window)

● Distributed Representation: Use the many context of w to build up (learn) a
representation of w

 …government debt problems turning into banking crises as happened in 2009….
 ….saying that Europe needs unified banking regulation to replace the….

 …Indica has just given its banking system a shot in the arm…..

Distributional Semantics

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● What we want to build:
○ Dense vector for each word, chosen so that it is similar to vectors of words

that appear in similar contexts (For example: King and Queen should be
similar since they co-occur in the same contexts)

○ Arbitrary-dimension word vectors: We want to choose dimension as a design
parameter

○ Since these vectors should be based on the different contexts words belong
to in our corpus (dataset) we want to learn these vectors with a data-driven
algorithm and by solving an optimization problem

● Word vectors are called word embeddings

Distributional Semantics

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Word2Vec is an algorithm for learning word vectors that exploits the
Representation Learning ability of Neural Networks (NNs) (the so-called
embedding)

● To learn these vector representation of each word w we want to take into account
every context of surrounding words of that word (Window)

● The goal is to train a Neural Net to predict the context given a word in input (it is
called the Skip-gram model)

● To achieve this result we should train a particular (but simple) NN that have the
same number of input units on the output layer and with a compression layer in
the middle

Word2Vec - Mikolov et al 2013 (Google)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

How training samples are extracted for Word2Vec

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Encoder- Decoder Architecture

● Suppose you have these sentences
○ The King is sleeping in the castle
○ The Queen is walking in the castle

● Suppose a window of context equal to 5
○ It means that for each word we consider the 5 words on the left and the 5 words on the

right

● So if the input is King, the Neural net should learn to predict {The, is, sleeping, in, castle}

● Since the input and the output can be every word in the dictionary, input layer and output
layer have the same dimension

● Words are encoded with one-hot encoding

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Encoder- Decoder Architecture

The

King

 is

 in

castle

Queen

walking

The

King

 is

 in

castle

Queen

walking

Input layer
(Dimension of
vocabulary V)

Output layer
(Dimension of
vocabulary V)

Hidden layer
(N° of neurons defines
the dimension of word
embeddings) In this
case N=3

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Skip-gram model {King, The}

The

King

 is

 in

castle

Queen

walking

The

King

 is

 in

castle

Queen

walking

Input layer Output layer

0
1
0
0
0
0
0

1
0
0
0
0
0
0

|V| x N matrix of
weights

N x |V| matrix
of weights

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Skip-gram model {King, castle}

The

King

 is

 in

castle

Queen

walking

The

King

 is

 in

castle

Queen

walking

Input layer Output layer

0
1
0
0
0
0
0

0
0
0
0
1
0
0

|V| x N matrix E
of weights

N x |V| matrix
C of weights

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Skip-gram model - In general

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Skip-gram model - In general

The

King

 is

 in

castle

Queen

walking

0
1
0
0
0
0
0

The

King

 is

 in

castle

Queen

walking

0
0
0
0
1
0
0

0.3 0.5 0.1
0.01 0.1 0.8
0.1 0.25 0.4
0.8 0.5 0.5
0.9 0.5 0.1
0.2 0.5 0.1
0.11 0.2 0.3

Matrix E and in green
the embedding for the
word King

0.1 0.5 0.2 0.1 0.9 0.4 0.1

0.2 0.1 0.4 0.1 0.8 0.3 0.5

0.1 0.3 0.2 0.6 0.9 0.1 0.2

Matrix C that
determines the output

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Word2Vec formally

● Every word in a fixed vocabulary has to be represented by a vector with an arbitrary dimension

● For each position t in the text (that represents the center of the context) consider to learn to
predict the surrounding words o in the context

● Formally we are computing conditional probabilities that a word o occurs given the word at
position t

● Keep adjusting the word vectors to maximize this probability (learning weights during training)

The old King was sleeping

t

P(wt-1| wt)

P(wt+1| wt)

P(wt+2| wt)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Word2Vec Objective (cost) function

● For each position t=1…..T, predict context words within a window of fixed size m, given center
word wj

Likelihood = L(𝛳) =

● The objective function J(𝛳) is the average negative log likelihood

● Minimizing this objective functions Maximizing predictive accuracy

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Word embeddings learnt with Doc2Vec seem to enable to a semantic algebra
among words using their relative distances

Semantic Algebra

● It was shown for example that vector(”King”) - vector(”Man”) + vector(”Woman”)
results in a vector that is closest to the vector representation of the word Queen

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Usually Word embedding visualization is performed using the t-SNE
dimensionality reduction technique because it preserves the relative distances in
the original multivariate space

Word embedding visualization

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

An alternative to the Skip-gram in Word2Vec is the CBoW (Continuous
Bag-of-words) where the Neural network is trained to predict the missing word
given the context

Continuous Bag-of-Words

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● We saw how to learn word feature vectors but what we have to do to encode
an entire document ?

○ We can learn word embeddings and then take the average or the sum of
them to encode each document

○ We can learn a Document embedding with Doc2Vec

What about Documents?

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● We add a special word in the document
with a specific id (called Paragraph ID)

● Then we say that the context of this
special word is the entire document (all
the words in the document)

● Learning word-embeddings we will
learn also the embedding for the
Paragraph ID that will be the
embedding for the entire document

Doc2Vec - Mikolov et al 2014

