
Learning from
sequences- RNN

Gianfranco Lombardo, Ph.D
gianfranco.lombardo@unipr.it

DIPARTIMENTO DI INGEGNERIA E ARCHITETTURA

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● If we want to deal with text or time series traditional Neural networks are not a good
choice:

○ For text: If i have a vocabulary of 10k words, with one-hot encoding my input
layers will have a 10k*n°words dimension or 10k for BoW with sentences

○ The ANN doesn’t share features learned across different position of text (or signal)
-> no temporal information

○ We need to use different models!
■ CNN with unit kernel can be a possibility
■ Recurrent Neural Network

Towards Recurrent Neural Network

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Let’s consider text translation (From english to italian for example):

○ We encoded our text with one-hot encoding, so we have a list of words in the form
of vectors

○ Each word in english is x<j> and the correspondent in italian is y<j> where j is the
position index inside the text

○ For sake of simplicity let’s also make the hypothesis that english and italian
sentences have the same length T = Tx = Ty , so words go from 1….T

○ Once we translated x<1> into y<1>, when we have to translate x<2> we want to take
into account the previous word x<1>

Recurrent Neural Network (RNN)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Recurrent Neural Network (RNN)

x<1

>

y<1

>Wya

Wxa

1
0
0
…
..

0
0
0

● A unit can be seen as a traditional ANN where we have
an input and a predicted output

● Input and output are associated with two weights
matrices Wxa and Wya (random initialized)

● What happens when we want to classify x<2> by
keeping into account x<1> ?

● We want to have memory of the previous words each
time !

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Recurrent Neural Network (RNN)

x<1

>

y<1

>Wya

Wxa

1
0
0
…
..

0
0
0

x<2

>

y<2

>Wya

Wxa

1
0
0
…
..

0
0
0

Waa

a<1

>

● When we consider the 2° word x<2>, to predict
the label y<2> we will use also some information
from the previous steps in the form of the
“activation value” a<1>

● A new matrix of weights Waa governs the
transmission of the past information

● Wax , Way and Waa are shared across the
sentence processing

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Recurrent Neural Network (RNN)

x<1

>

y<1

>Wya

Wxa

1
0
0
…
..

0
0
0

x<2

>

y<2

>Wya

Wxa

1
0
0
…
..

0
0
0

Waa

a<1

>

● For consistency we add an initial
activation value for the processing of the
first word: a<0>

● a<0> is usually initialized as zero
Waa

a<0

>

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Recurrent Neural Network (RNN)

x<1

>

y<1

>Wya

Wxa

1
0
0
…
..

0
0
0

x<2

>

y<2

>Wya

Wxa

0
1
0
…
..

0
0
0

Waa

a<1

>
Waa

a<0

>

x<3

>

y<3

>Wya

Wxa

0
0
1
…
..

0
0
0

Waa

a<2

>

x<t>

y<t>

Wya

Wxa

0
0
0
…
..

0
0
1

Waa

a<t>
…..…….

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Recurrent Neural Network (RNN)

x<j>

y<j>

Wya

Wxa

Waa

a<j>

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Think to the RNN’s unit as a neuron in a traditional ANN

● a<0>= 0

● a<1> = σ(Waa• a<0> + Wxa • x
<1> + ba)

● y<1> = σ(Wya• a<1> + by)

Forward propagation

More general notation

a<j> = σ (Waa• a
<j-1> + Wxa • x

<j> + ba) a
<j> = σ(WA• [a<j-1>, x<j>] +

ba)

y<j> = σ(Wya• a
<j> + by)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Considering the forward propagation in the previous slide:

○ a<j> = σ(WA• [a<j-1>, x<j>] + ba)

○ y<j> = σ(Wya• a
<j> + by)

● Things that “goes back” are from up to down and also from right to left (time
axis)

● The Loss function (e.g., Cross-entropy) for each block (so for each word) is:
○ L<j>(y*<j>, y<j>) = - y<j> •log(y*<j>) - (1 - y<j>) •log(1- y*<j>)

● Loss for the entire sequence is defined as the sum from 1 to Ty of the loss

Backpropagation Through Time

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Different RNN architectures

Many-to-one (e.g., Sentiment analysis) One-to-many

y

x<1> x<1> x<1> x<1>

….

y

 x

….

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Different RNN architectures

● Many-to-many (e.g., Machine translations) and Tx and Ty can have different size

y<1

>

x<1> x<2> x<3>

y<2

>

DECODER
ENCODER

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

BREAK

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● The RNN is not good at capturing long-term dependencies
○ We should make a very deep neural network
○ Back-propagation is difficult because on the basis of the final y*, changes

will affect also the starting layers
○ The gradient will be vanishingly small, effectively preventing the weight

from changing its value. In the worst case, this may completely stop the
neural network from further training. (Vanishing gradient)

○ The opposite problem is that gradient could explode with deep RNN
■ The value of weights become NaN because it overflows (Exploding

gradient).
■ One solution is Gradient Clipping: Rescale values when above a

certain threshold

Problems with RNN

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

 Gated Recurrent Unit (GRU) Long Short Term Memory (LSTM)

Change the hidden unit to reduce vanishing problem

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

 RNN GRU LSTM

Comparison among different types of Recurrent Neural Network

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

LSTM for text classification

I Love You

Positive/Negative?

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

LSTM for text classification

One Hot Encoding LSTM Network with One Hot Encoding

Rome Paris To watch movies also football too

Bag of Words Model
Positive/
Negative?

[0,0 ..1, 0,0] [1,0 ... 0,0] [0,0 ... 0,1]

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

One-hot-encoding is not efficient for LSTMs

Positive/
Negative?

[0,0 ..1, 0,0] [1,0 ... 0,0] [0,0 ... 0,1]

• One hot encoding is a very inefficient way
to represent words for text classification
with LSTM

• The dimension of the encoding vector
increase with the number of words inside
the Bag of Words Model

• 🡪 [0,0,0,0,0,0,0,0,0,0,0 1...... 00000]

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Word Embedding layer

Positive/
Negative?

[9.2,3.6] [5.67,1.11] [5.87,1.11]

#....
model.add(Embedding(...))
#....

• Embedding Layer turns words into real
vectors (non sparse vector,
computationally efficient)

• The vector is N-dimensional and the
dimension is a parameter that we can
set

• It acts as a look-up table

• This table is learned during training

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Word Embedding layer

Positive/
Negative?

[9.2,3.6] [5.67,1.11] [5.87,1.11]

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Transform the dataset

from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences

max_fatures = 15000

tokenizer = Tokenizer(num_words=max_fatures, split=' ')
tokenizer.fit_on_texts(reviews)
X = tokenizer.texts_to_sequences (reviews)
X = pad_sequences(X, maxlen=150)

● Keras offers its own Tokenizer (as Sklearn offers CountVectorizer and tfdif vectortizer)
○ Padding sequences is necessary when sentences are shorter than maxlen

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

LSTM with Keras

model = Sequential()

model.add(Embedding(max_fatures, 64, input_length = X.shape[1]))
model.add(LSTM(50))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy' , optimizer='adam', metrics=['accuracy'])

The length of the vector for the words representation

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Embedding, LSTM
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences

