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● If we want to deal with text or time series traditional Neural networks are not a good 
choice:

○ For text: If i have a vocabulary of 10k words, with one-hot encoding my input 
layers will have a 10k*n°words dimension or 10k for BoW with sentences

○ The ANN doesn’t share features learned across different position of text (or signal) 
-> no temporal information

○ We need to use different models!
■ CNN with unit kernel can be a possibility
■ Recurrent Neural Network

Towards Recurrent Neural Network
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● Let’s consider text translation (From english to italian for example):

○ We encoded our text with one-hot encoding, so we have a list of words in the form 
of vectors

○ Each word in english is x<j> and the correspondent in italian is y<j> where j is the 
position index inside the text

○ For sake of simplicity let’s also make the hypothesis that english and italian 
sentences have the same length T = Tx = Ty , so words go from 1….T

○ Once we translated x<1> into y<1>, when we have to translate x<2> we want to take 
into account the previous word x<1>

Recurrent Neural Network (RNN)
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Recurrent Neural Network (RNN)
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● A unit can be seen as a traditional ANN where we have 
an input and a predicted output

● Input and output are associated with two weights 
matrices Wxa and Wya  (random initialized)

● What happens when we want to classify x<2> by 
keeping into account x<1> ?

● We want to have memory of the previous words each 
time !
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Recurrent Neural Network (RNN)
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● When we consider the 2° word x<2>, to predict 
the label y<2> we will use also some information 
from the previous steps in the form of the 
“activation value” a<1>

● A new matrix of weights Waa governs the 
transmission of the past information

● Wax , Way and Waa are shared across the 
sentence processing
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Recurrent Neural Network (RNN)
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● For consistency we add an initial 
activation value for the processing of the 
first word: a<0>

● a<0> is usually initialized as zero
Waa

a<0

>
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Recurrent Neural Network (RNN)
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Recurrent Neural Network (RNN)
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● Think to the RNN’s unit as a neuron in a traditional ANN

● a<0>= 0

● a<1> = σ(Waa• a<0> + Wxa • x
<1> + ba)

● y<1> = σ(Wya• a<1> + by)

Forward propagation

More general notation

a<j> = σ (Waa• a
<j-1> + Wxa • x

<j> + ba)                   a
<j> = σ(WA• [ a<j-1>, x<j>] + 

ba)

y<j> = σ(Wya• a
<j> + by)



 Gianfranco Lombardo, Ph.D  (gianfranco.lombardo@unipr.it)

● Considering the forward propagation in the previous slide:

○  a<j> = σ(WA• [ a<j-1>, x<j>] + ba)

○ y<j> = σ(Wya• a
<j> + by)

● Things that “goes back” are from up to down and also from right to left (time 
axis)

● The Loss function (e.g., Cross-entropy) for each block (so for each word) is:
○ L<j>( y*<j>,  y<j>) = - y<j> •log(y*<j>) - (1 - y<j>) •log(1- y*<j>)

● Loss for the entire sequence is defined as the sum from 1 to Ty of the loss

Backpropagation Through Time
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Different RNN architectures

Many-to-one (e.g., Sentiment analysis) One-to-many
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Different RNN architectures

● Many-to-many (e.g., Machine translations)  and Tx and Ty can have different size
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BREAK
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● The RNN is not good at capturing long-term dependencies
○ We should make a very deep neural network
○ Back-propagation is difficult because on the basis of the final y*, changes 

will affect also the starting layers
○ The gradient will be vanishingly small, effectively preventing the weight 

from changing its value. In the worst case, this may completely stop the 
neural network from further training. (Vanishing gradient)

○ The opposite problem is that gradient could explode with deep RNN
■ The value of weights become NaN because it overflows (Exploding 

gradient). 
■ One solution is Gradient Clipping: Rescale values when above a 

certain threshold

Problems with RNN
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        Gated Recurrent Unit (GRU)                        Long Short Term Memory (LSTM)

Change the hidden unit to reduce vanishing problem
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   RNN                                       GRU                                    LSTM

Comparison among different types of Recurrent Neural Network
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LSTM for text classification

I Love You

Positive/Negative?
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LSTM for text classification

One Hot Encoding LSTM Network with One Hot Encoding

Rome Paris To watch movies also football too

Bag of Words Model
Positive/
Negative?

[0,0 ..1, 0,0] [1,0 ... 0,0] [0,0 ... 0,1]
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One-hot-encoding is not efficient for LSTMs

Positive/
Negative?

[0,0 ..1, 0,0] [1,0 ... 0,0] [0,0 ... 0,1]

• One hot encoding is a very inefficient way 
to represent words for text classification 
with LSTM

• The dimension of the encoding vector 
increase with the number of words inside 
the Bag of Words Model

• 🡪 [0,0,0,0,0,0,0,0,0,0,0 ....... 1...... 00000]
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Word Embedding layer

Positive/
Negative?

[9.2,3.6] [5.67,1.11] [5.87,1.11]

#.... 
model.add(Embedding(...)) 
#....

• Embedding Layer turns words into real 
vectors (non sparse vector, 
computationally efficient)

• The vector is N-dimensional and the 
dimension is a parameter that we can 
set

• It acts as a look-up table

• This table is learned during training
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Word Embedding layer

Positive/
Negative?

[9.2,3.6] [5.67,1.11] [5.87,1.11]
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Transform the dataset

from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences

max_fatures = 15000 

tokenizer = Tokenizer(num_words=max_fatures, split=' ') 
tokenizer.fit_on_texts(reviews)
X = tokenizer.texts_to_sequences (reviews)
X = pad_sequences(X, maxlen=150)

● Keras offers its own Tokenizer (as Sklearn offers CountVectorizer and tfdif vectortizer)
○ Padding sequences is necessary when sentences are shorter than maxlen



 Gianfranco Lombardo, Ph.D  (gianfranco.lombardo@unipr.it)

LSTM with Keras

model = Sequential()

model.add(Embedding(max_fatures, 64, input_length = X.shape[1]))
model.add(LSTM(50))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy' , optimizer='adam', metrics=['accuracy'])

The length of the vector for the words representation

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Embedding, LSTM
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences


