
Design principles for ML

Gianfranco Lombardo, Ph.D
gianfranco.lombardo@unipr.it

DIPARTIMENTO DI INGEGNERIA E ARCHITETTURA

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Project Management in Machine Learning

1 - Look at the big picture

2 - Get the data

3 - Discover and visualize data to gain insights

4 - Prepare your data for ML algorithms

5 - Select a model and train it

5.1 - Fine-tune your model with a Validation Set

5.2 - Compare with other models

6 - Choose the best and test it

7 - Launch, monitor and maintain your system

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

1 Look at the big picture

1. Define the objective in business terms

2. How will your solution be used?

3. How should you frame this problem? Supervised/Unsupervised learning?
a. Is it a regression or a classification task?

4. How should performance be measured? and is the performance measure
aligned with the business objective? What would be the minimum performance
need to reach the business objective?

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

2 Get the data

1. List the data you need and how much you need
a. If classification task: try to collect enough example for each class you need

to teach to the classifier

2. Convert the data to a format you can easily manipulate without changing the
data itself

3. Ensure sensitive information is deleted or protected (e.g., anonymized)

4. Check the size and type of data (Time series, sample, geographical etc..)

5. Sample an evaluation set (test set), put it aside and NEVER look at it until the
end when you have to evaluate the generalization error of your model

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

3 Explore the data

1. Study each attribute of your dataset and its characteristics:
a. Type (categorical, numerical)
b. Bounded/unbounded
c. Text or structured
d. % missing values
e. Noisiness and type of noise (random, outliers, rounding errors etc..)
f. Evaluate if the attribute can be useful for the task

g. Data distribution (Gaussian, uniform, logarithmic)

2. For supervised tasks, identify the target attribute (y)

3. Visualize the data

4. Study the correlations between attributes

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

4 Prepare your data for the ML algorithms

1. Data cleaning
a. Fix or remove the outliers (optional): but outliers can have an impact on

learning and on the performance measure
b. Fill in missing values (e.g., with zero, mean of the attribute, median..) or drop

their rows (or columns)

2. Feature selection (optional)
a. Drop the attributes that provide no useful information for the task

3. Feature engineering
a. Discretize continuous features
b. Add promising transformations of features (e.g., log(x), x^2, sqrt(x)
c. Aggregate features into promising new ones

4. Feature scaling: normalize or standardize features

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● One of the most important pre-processing is represented by feature scaling in
order to help gradient descent to converge quickly towards the global minimum

● Main idea: Make sure features are on a similar scale (range of values)
● Let’s see an example:

○ Price of the house dataset
○ One feature x0 (m

2): range between 50 to 600
○ Another feature is n° rooms: range between 1 to 10

● When we want to perform a simple linear regression (or classification) and look
at the parameter space we can see that these different ranges introduces a
distortion of the space over (several) axes

● Make the hypothesis we want to minimize a cost function J(w0,w1,w2)

Feature scaling

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Feature scaling: main idea

w1

w2 J(W)
● Distortion of the space along the axes
● Moreover, different algorithms exploit the

euclidean distance among the training
examples (e.g., K-nearest neighbors).

● If one of the features has a broad range
of values, the distance will be governed
by this particular feature

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Feature scaling: main idea

w1

w2 J(W)
● If we scale feature in order to have

the same range, our J(W) will be
less skinny and more regular

● Gradient descent will require less
time to converge towards the
minimum

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Feature scaling types

Min-max normalization Mean normalization

Standardization (or Z-Score)

with

The feature will have zero-mean
and unit variance

The feature will range between
0 and 1

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Feature scaling

● Pay attention: To compute min, max, mean or std to perform feature scaling
you have always refer to the training-set! Never the test set, because you
should always think that the test set could be something unknown during the
training!

● Store the values you need from the training and then apply the pre-processing
over the test-set before using it in your predictor

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Feature scaling

Mq N°rooms Price

50 2 80,000 $

75 3 100,000 $

125 4 130,000 $

35 1 50,000 $

200 5 220,000 $

60 2 90,000 $

100 3 110,000 $

Training-set
avg(Mq) = 97 std(Mq) = 59,88
avg(Rooms) = 3 std(Rooms) = 1,41

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Example of standardization

Mq N°rooms Price

-0,78 -0,70 80,000 $

-0,36 0 100,000 $

0,46 0,70 130,000 $

-1,04 -1,41 50,000 $

1,72 1,141 220,000 $

Training-set
avg(Mq) = 97 std(Mq) = 59,88
avg(Rooms) = 3 std(Rooms) = 1,41

zero mean zero mean
I will use later these values (computed on the
training-set) to pre-process also the test set !

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

avg = np.mean(X_train, axis=0)
std = np.std(X_train,axis=0)

X_train = (X_train-avg)/std
X_test= (X_test-avg)/std

Feature scaling with Python

Alternatives present directly in Sklearn
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Feature Selection

● Big data are not always the answer

● Some features can lead to worst results

● Some features are just unuseful

● Reduces Overfitting: Less redundant data means less opportunity to make
decisions based on noise.

● Improves results: Less misleading data·

● Reduces Training Time: fewer data points reduce algorithm complexity and
algorithms train faster.

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Feature Selection

This phenomenon is due
to the Curse of
Dimensionality

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

●Using matplotlib and the iris dataset.csv:

○ Read the dataset with pandas
○Plot iris data using sepal length (x axis) and

sepal width (y axis), representing different classes with
different colors.

○Plot iris data using petal length (x axis) and petal
width (y axis), representing different classes with
different colors.

●Compare the two representations

Example
Number of Instances
150 (50 in each of three classes)

Number of Attributes
4 numeric, predictive features and the
class

Features Information
● sepal length in cm
● sepal width in cm
● petal length in cm
● petal width in cm
● class:

○ Iris-Setosa
○ Iris-Versicolour
○ Iris-Virginica

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Select the best features based on univariate statistical tests, for example the
chi² test

○ This score can be used to select the n_features with the highest values
for the test chi-squared statistic from X, which must contain only
non-negative features such as booleans or frequencies, relative to the
classes.

● The chi-square test measures dependence between stochastic variables

● This function avoid features that are the most likely to be independent of class
and therefore irrelevant for classification.

Univariate feature selection with chi2 test

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Univariate feature selection with chi2 test

from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
df = pd.read_csv("iris_dataset.csv")
y = df.pop('class')
X = df

#apply SelectKBest class to extract the k best features
bestfeatures = SelectKBest(score_func=chi2, k=2)
fit = bestfeatures.fit(X,y)
dfscores = pd.DataFrame(fit.scores_)
dfcolumns = pd.DataFrame(X.columns)
#concat two dataframes for better visualization
featureScores = pd.concat([dfcolumns,dfscores],axis=1)
featureScores.columns = ['Specs','Score'] #naming the dataframe columns
print(featureScores)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Estimate mutual information for a target variable.

● Mutual information (MI) between two random variables is a non-negative
value, which measures the dependency between the variables. It is equal to
zero if and only if two random variables are independent, and higher values
mean higher dependency

● The methods based on F-test estimate the degree of linear dependency
between two random variables (like chi2). On the other hand, mutual
information methods can capture any kind of statistical dependency, but being
nonparametric, they require more samples for accurate estimation.

Feature selection with Mutual information

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Feature selection with Mutual information

from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import mutual_info_classif #mutual_info_regression
df = pd.read_csv("iris_dataset.csv")
y = df.pop('class')
X = df

#apply SelectKBest class to extract the k best features
bestfeatures = SelectKBest(score_func=mutual_info_classif, k=2)
fit = bestfeatures.fit(X,y)
dfscores = pd.DataFrame(fit.scores_)
dfcolumns = pd.DataFrame(X.columns)
#concat two dataframes for better visualization
featureScores = pd.concat([dfcolumns,dfscores],axis=1)
featureScores.columns = ['Specs','Score'] #naming the dataframe columns
print(featureScores)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

5 Assumptions on data

● From (A. Geron book)

● A model is a simplified version of the observations, where “simplification” means
that the model discards the superfluous details that are unlikely to generalize to
new instances. However, to decide what data to discard and what data to keep,
you must make assumptions

● For example, a linear model makes the assumption that the data is fundamentally
linear and that the distance between instances and the straight line is just noise,
which can be be, thus, ignored.

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

5 The No free Lunch Theorem (NFL, D.Wolpert 1996)

● If you make absolutely no assumption about the data, then there is no reason to
prefer one model over any other

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

5 The No free Lunch Theorem (NFL, D.Wolpert 1996)

In light of NFL, for some datasets the best model is a linear model, for others Gradient
boosting (or others) and for more other datasets is a Neural Network:

● There is no model that is a priori guaranteed to work better

● The only way to know for sure which is the best model for your data and task is to
evaluate them all

● An alternative is to make some reasonable assumptions to evaluate less models
○ For simple tasks you may evaluate linear models with various levels of

regularization or ensemble learning
○ For complex tasks you may evaluate a Neural Network

● Another thing to be taken into account is the number of parameters you should learn
with respect of your dataset dimension (in terms of features and in terms of n°
examples)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

5 Model comparison

● A general idea can be to compare all the models using the same training and validation set
with the default parameters and then choose the best one

○ First problem: Results are not always the same because of:
● Stochasticity of learning models (usually parameters initialization)
● Random division between training and validation

■ Solution: Evaluate each model for several different runs and then consider the
average result
● At least 10 runs is suggested

○ Once you found the best learning algorithm you should fine-tune the model
hyper-parameters (n° of tree, regularization methods etc..)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

How to fine-tune hyper-parameters ?

Grid-search
● We try every combination of a preset list of

values of the hyper-parameters and evaluate
the model for each combination.

● Each set of parameters is taken into
consideration and the result is noted.

● Once all the combinations are evaluated, the
model with the set of parameters which give
the best result on the VALIDATION SET is
considered to be the best.

● The number of evaluations required for this
strategy increases exponentially with each
additional parameter

Random search
● Random combinations of the

hyperparameters are used to find the best
solution

● It works well for lower dimensional data since
the time taken to find the right set is less with
less number of iterations

● In Random Search for Hyper-Parameter
Optimization by Bergstra and Bengio, the
authors show empirically and theoretically
that random search is more efficient for
parameter optimization than grid search

● When dimension is high it is better to
combine with a Grid-search

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

5 Analyze the best model and its errors during fine-tuning

● To better analyze the best configuration of the hyper-parameters it is suggested to
evaluate for each combination what is the error on the training-set and on the
validation-set to identify if overfitting or underfitting occurs and when because
otherwise the model will not work on test-set at the end!

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

5 K-Fold Cross-Validation

● When the dataset is not huge the validation set can be small
○ This means that you risk to evaluate your model on lucky or unlucky cases

● You can always random split dataset in training and validation at each run but the
dimension of your validation can always be a source of bias
○ One suggested possibility is to cross-validate your model

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

5 K-Fold Cross-Validation

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

5 K-Fold Cross-Validation

● K-Fold because you divide your dataset in K folds

● Perform K runs and for each run the algorithm select K-1 fold for training and one
as Validation-set

● Once finished you get the average performance on the entire dataset so you have
less variance rather than using a single small validation set

● Moreover the cross-validation allows you to get not only an estimate of the
performance of your model, but also a measure of how precise the estimate is
(e.g., the standard deviation)

● Pay attention: If you want to compute the accuracy you should use a different
version of k-fold cross-validation to get balanced folds (see for example stratified
k-fold if your dataset is already balanced)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

5 K-Fold Cross-Validation

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import KFold

df = pd.read_csv("iris_dataset.csv")
y = df.pop('class')
X = df

kf =KFold(n_splits=10, random_state=None, shuffle=False) #initialize KFold

for train_index, validation_index in kf.split(X):
print("TRAIN:", train_index, "VALIDATION:", validation_index)
X_train = X.iloc[train_index]
X_validation = X.iloc[validation_index]
y_train= y[train_index]
y_validation = y[validation_index]

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

5 Let’s summarize the pipeline

1. Divide data in 80 % training and 20% test

2. Apply feature scaling

3. From the training extract the 10% as a validation set and use only this set to
compare, select and fine-tune your model (In alternative use the Cross-validation)

4. Make a grid or random search over the possible parameters and evaluate your
models with the validation

5. When you got good results, evaluate your model over the test set to have good
guarantees about your model capacity of generalization!
a. If you use the test-set before that point you will lose the possibility of evaluate

if your model is really generalizing or not

