
 LAB: Learning from
sequences- RNN

Gianfranco Lombardo, Ph.D
gianfranco.lombardo@unipr.it

DIPARTIMENTO DI INGEGNERIA E ARCHITETTURA

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Ex. 1: Sentiment analysis without Neural networks
● Classify the review in “corpus.csv” (Sentiment Analysis)

○ The structure is class#SEP#document
■ class: Category to predict, can be positive or negative
■ document: Content of reviews
■ sep =”#!#”

● Read the csv with pandas and create a vector y and a matrix with documents X

● Divide in train and test
○ X_train, X_test, y_train, y_test = train_test_split(X, y)

● Encode categorical y_train and y_test as in the code:
label encode the target variable Y
encoder = LabelEncoder()
y_train = encoder.fit_transform(y_train)
y_test = encoder.fit_transform(y_test)

● Follow the example for BoW
● Design a classification system choosing an algorithm among Logistic regression, Decision tree,

Adaboost, Gradient boosting or XGBoost
● Compute the accuracy

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Ex. 1: Sentiment analysis without Neural networks

● Visualize (matplotlib) how the accuracy change by changing the max_features (step = 1000)
○ CountVectorizer(max_features=1000) … CountVectorizer(max_features=10000)

● Find out which is the best ngram_range to consider:
○ CountVectorizer(ngram_range=(1,1)) … CountVectorizer(ngram_range=(1,3))

● Try The tf-Idf Vectorizer
○ TfidfVectorizer()

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Repeat the exercise of sentiment analysis starting from corpus.csv

● Design your own LSTM selecting all the parameters (try embedding
dimension equal to 100 as a starting point)

● Plot the loss or the accuracy with “history object” to understand if you are
overfitting or not

Ex. 2 - Sentiment Analysis with LSTM

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Ex. 2 - Sentiment Analysis with LSTM

replace with the data you want to classify

newtexts = ["i love you", "I Hate you", "yes, this movie is amazing" ,"New
Zealand is beautiful"]

note that we shouldn't call "fit" on the tokenizer again
sequences = tokenizer.texts_to_sequences (newtexts)
data = pad_sequences(sequences, maxlen=150)
get predictions for each of your new texts
predictions = model.predict_classes(data)

print(predictions)
print(encoder.inverse_transform (predictions))

● Classify your own sentences !!

