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Summary on Neural Networks

● Multilayer Perceptron (MLP)

● Functions approximation

● Generic classification tasks

● In the past used also for more 
complex tasks with several 
limits in the training phase
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What about image classification and related tasks ?

● Multi-layer perceptron has been used 
also for image analysis but with several 
limits:

○ Memory constraints
○ Accuracy results often lower or 

equal to other less complex 
models (e.g Support Vector 
Machine)

○ With high resolution images  
training is often computationally 
infeasible
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Solution: Convolutional Neural Network  (CNN)
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What is a digital image ?

● Grey-scale images can be 
viewed as a matrix of values 
(pixels)

● Each pixel has a value 
between 0 (black) and 255 
(white)

● With the lack of colors we can 
say that these images are 
“single channel”
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What is a digital image ?

c

● To have a color image we need more 
channels to add these information

● For example RGB images can be 
viewed as a tensor of values:
○ Each layer is a channel describing 

a color component of the image
○ Dimension are Width X Height X  

N o of Channels
○ Example: 

32

32

= 32x32x3 = 3072 values
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Image classification with a Neural network

● The basic idea is “to flatten” the image matrix and using each value as an input xi of the 
network

● Advantages: No preliminary feature extraction needed
○ Network learns its own feature analyzing the training set at each epoch
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Let’s recap the basic concepts of a neuron
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Image classification with a Neural network

w =  1000 

h 
= 

 1
00

0

● Images with a medium-low resolution of 1 megapixel
● The input matrix shape is 1000x1000x3
● X input matrix contains 3 millions of elements

○ Just consider the number of neurons in the first hidden layer
○ We need many neurons to increase network learning 

capacity but there are some limits
■ Being J the number of neurons in layer 1
■ The weight matrix W of layer 1 has shape ( J, 3x106)
■ If J=1000 -> W has 3 billions of elements
■ If J=100 -> W has 300 millions of elements
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Find a tradeoff !

● Using traditional Neural networks with high resolution and color images brings to:
○ Too many elements in weight matrix for each layer -> Difficult avoiding overfitting while 

learning Wij elements with backpropagation algorithm if we do not have a HUGE number of 
images

○ Memory requirements can become hard to be satisfied !

Possible tradeoffs: 
● Use grey-scale images: Only 1 channel VS loss of information
● Use low resolution images: Possible in some contexts, reducing W matrix shape VS loss of information
● Increase hardware capacity: computational power VS costs

● Used in some real applications in 90s (e.g handwritten postcode recognition etc..)
○ Due to these limitations neural networks based systems have been abandoned for less complex 

models until about our days with the advent of Deep Learning !!
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Not only computational limits !

Main advantage: Automatic feature 
extraction

Issue: Loose of local information

● Visual features get extracted in an automatic way 
by the Neural Network in the learning phase of 
the inner weights 

● No need of important pre-processing steps

● Difficult to understand which features have been 
considered by the network !

● To increase network capacity in extracting 
features we need several hidden layers and 
neurons

● To fed the neural network we have to flatten 
the image, losing its 2D structure

● It can affect results in an important way in 
some kinds of classification tasks !

● In fact, in traditional Computer Vision models, 
visual features get extracted by using Kernels 
(or filters) and the convolutional operator 
on images!
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Filters and convolution operator on images

● Manual extraction of visual features on images is usually conducted by convolving filters 
(or kernels) on images

● Each desidered feature can be extracted by convolving the image with the appropriate 
filter 
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Filters and Convolution operator 

● Convolution is the process of adding each element of the image to its local neighbors, 
weighted by the filter

● The resulting image is obviously compressed in its dimension
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Dimension of convolved feature ?

● Image has dimension mxn
● Filter has dimension fxf
● The resulting convolved feature has 

dimension:
(m-f+1) x (n-f+1)
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Example: Vertical edges detection
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Convolution over volumes ( RGB image)

Note: Filter’s channel number has to be equal to the number of image channels !
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Avoid the image shrinking output:  Padding !

● Everytime we perform a convolution, we shrink the output image
● To avoid it, it is useful to pad the input image with other values at the border
● It helps also to keep more of the information at the border of the input image
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Strided convolution

● A variant of the classic convolution operator that consists in making some “jumps” 
convolving the filter on the image

● It is like a shallow convolution that can permit us to increase or manage the shrinking of the 
output
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How to calculate the final dimension of the output image

● m : Width of the image
● n: Height of the image
● f : Dimension of the fxf filter

● p :  Padding pixels
● s:   Striding pixels
● Nf: Number of filters



 Gianfranco Lombardo, Ph.D  (gianfranco.lombardo@unipr.it)

So...let’s recap 

● Automatic feature extraction while learning 
network weights

● Flattening the image causes the loss of 
local information

● Explosion of the computation complexity 
due to the flatten image

● Once features have been extracted convolving the 
appropriate filters on the images, we can use those 
features to train an ad-hoc machine learning model 
with different types of algorithms

○ The choose of the algorithm depends on the 
target task

● The choice of the appropriate filters is not so 
easy, we have to refer to literature or try to invent 
our own filters !
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Why do not join these two approaches ?

● The perfect tradeoff would be:

○ Automatic feature extraction as in the Neural network model

○ Using kernels approach to reduce W matrix shapes in each layer and without losing local 
information in the images

○ Learn automatically the appropriate filters as weights of the network

○ Consequently, carry out an automatic feature extraction based on kernels approach

Convolutional Neural Networks !!
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BREAK
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Solution: Convolutional Neural Network  (CNN)

● A Deep learning architecture proposed by Yann LeCun in 90s but only today it is trainable in an efficient 
way and with several layers thanks to GPU’s

● It is bio-inspired, because the organization of the neurons resembles the organization of the animal 
visual cortex

● Individual cortical neurons respond to stimuli only in a restricted region of the visual field known as the 
receptive field. The receptive fields of different neurons partially overlap such that they cover the entire 
visual field.
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The convolutional layer

● In the convolutional layer, neurons are arranged in a 2D structure

● It is composed by two operators:
○ Convolution operator 
○ Pooling operator

● Each layer has as input a tensor with shape ( Width, Height, channels)

Image Convolution
with filters Pooling

Resulting image 
(input for a new 

layer)
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Convolutional operator in the Convolutional layer

*

*
RGB image

Filters to learn Results of the 
convolutions

● Weights to learn are the elements 
of filters tensors

● Let’s call the result of the 
interaction between input data and 
weights Z = Input*Weights

● We also need to apply an activation 
function to Z
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Convolutional operator in the Convolutional layer

+ b1

+ bj

*

*
RGB image

Filters to learn Results of the 
convolutions

𝜎

𝜎

Activation
function

Image ready for 
the next layer
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Shapes in the Convolutional Layer

+ b1

+ bj

*

*
Image 6x6x3

10 Filters 3x3x3 Results of each 
convolution is 4x4

𝜎

𝜎

Activation
function

New image is 
4x4x10

Note: At filters level we 
have 28*10 parameters 
independent from the 
image shape !!!
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Comparison between Neurons and input data

𝜎
Activation
function

+ b1* Not YET the 
exact activation 

of neuron i 
of layer jZ
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The pooling operator

● Last step of the Convolutional layer
● It doesn’t learn any parameters but makes network computation faster by reducing the dimension 

of the representations
● It is also useful for the network to summarize the feature learned by each neuron to make these 

features more robust
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The pooling operators

● Most used
● Max-pooling layer: slides an (f,f) window over 

the input and stores the max value of the 
window in the output.

● Average-pooling layer: slides an (f,f) 
window over the input and stores the 
average value of the window in the 
output.
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Tips: Convolutional Neural Network

● Going in deep with several conv-layers, the image size get reduced while the numbers of filters 
increase to distinguish more complex and high level features

● Then the resulting image is flattened to be fed into the last layers ( Fully connected or Dense) that 
are traditional Multi-layer perceptron layers
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Inside a CNN

● http://scs.ryerson.ca/~aharley/vis/conv/flat.html : Online simulator of number recognition with CNN, useful 
to understand what happens inside the network and which features get extracted by convolutions

http://scs.ryerson.ca/~aharley/vis/conv/flat.html
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CNN in Keras

from tensorflow.keras import models
from tensorflow.keras import layers

network = models.Sequential() #initialize the neural network

network.add(layers.Conv2D(N°of filters, (f, f), activation='relu', input_shape=(width, height, N°of channels))) # Convolution 
operator
network.add(layers.MaxPooling2D((fw, fw))) #Pooling operator
# For the other convolutional layers the input shape is automatically calculated but PAY ATTENTION
network.add(layers.Conv2D(64, (3, 3), activation='relu'))
network.add(layers.MaxPooling2D((2, 2)))

network.add(layers.Flatten()) #Flatten the image
network.add(layers.Dense(N°neurons, activation='relu')) #Fully connected layers as in normal neural networks
network.add(layers.Dense(10, activation='softmax'))
network.summary() # Shows information about layers and parameters of the entire network

Convolutional layer
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Benefits of Convolutional Neural Networks

● Less parameters respect to Multy-layer perceptron, risk of overfitting is reduced (but still a problem)

● Parameters sharing: Filters (as feature detector) convolve the entire image
○ The idea is that if a feature detector is useful in one part of the image, it is probably useful also in 

other parts of the image

● Sparsity of connections: In each layer, each output values depends only on a small number of inputs 
and not on the entire image! ( Benefit due to the use of filters)

● Learning as an optimization problem the filters value, it is possible to learn feature detectors for 
example for vertical, horizontal and diagonal edges at the same time

○ The most important consequence is that extracted features are Translational invariance
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How to choose parameters ? 

● There is no a formal rule to select hyperparameters ! Design a Deep learning model is more like an art 
based on the experience.

● Some general tips:
○ Image shape shrinks going deeper in the network while the number of filters increase (but not the 

shape)

○ More conv-layers help the network to extract more robust feature. However if you do not have an 
huge dataset the overfitting risk is still high!

○ Do not underestimate the importance of Pooling operator to make feature more robust!

○ If you do not have a very huge dataset use the Dropout technique before the last layers

○ Last layers are usually dense (or fully connected) to help the network to classify

○ Hyperparameters can be estimated using also a Grid search or a Random search
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Existing CNN architectures in Deep learning literature

● LeNet-5 (1998 Yann LeCun)

● AlexNet (2012 Alex Krizhevsky, Geoffrey Hinton)

● GoogleNet (2014)

● VGGNet(2014 Simonyan and Zisserman)

● ResNet (2015 Kaiming He)

● This list is not exhaustive
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LeNet 

● Used for the MNIST dataset by Yann 
LeCun

● 3 Convolutional layers (C1+S2 , C3+S4, 
C5)

● After C5 images get flatten in 120
● F6 is a dense layer as F7(output)

● Nowadays ReLU is more suggested than 
tanh as activation function and also 
MaxPooling instead of Average Pooling
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LeNet-5 in Keras

from tensorflow.keras import models
from tensorflow.keras import layers

network = models.Sequential() #initialize the neural network
network.add(layers.Conv2D(6, kernel_size=(5, 5), strides=(1, 1), activation='tanh', input_shape=input_shape, padding="same"))

network.add(layers.AveragePooling2D(pool_size=(2, 2), strides=(1, 1), padding='valid'))

network.add(layers.Conv2D(16, kernel_size=(5, 5), strides=(1, 1), activation='tanh', padding='valid'))

network.add(layers.AveragePooling2D(pool_size=(2, 2), strides=(2, 2), padding='valid'))

network.add(layers.Conv2D(120, kernel_size=(5, 5), strides=(1, 1), activation='tanh', padding='valid'))

network.add(layers.Flatten())

network.add(layers.Dense(84, activation='tanh'))

network.add(layers.Dense(nb_classes, activation='softmax'))

network.summary() # Shows information about layers and parameters of the entire network
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AlexNet

● More recent architecture
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VGGNet
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GoogleNet
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Can we use CNNs for time series? A real case

● 15 Utenti
●   3 Protocolli di attività
●   3 Dispositivi MuSA
●   3 Sensori per dispositivo

  

Sdraiarsi a terra (9)

  Seduto (4)

  Fermo in piedi (2)

  Camminare  (1)

  Correre (6)

  Salire le scale (8)

  Scendere le scale (7)

Alzarsi in piedi (5)
Sedersi (3)

1 2 3 4 5
6 7 8 9

A
ccelerom

etro
G

iroscopio
M

agnetom
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Human Activity Recognition

● Campionamento:
○ Frequenza: 50Hz
○ Finestra: 2.56s (128 campioni)
○ Overlap al 50%

15616
   

2.56 secondi

IoT wearable sensor and deep learning: An integrated approach for personalized human 
activity recognition in a smart home environment
Valentina Bianchi, Marco Bassoli, Gianfranco Lombardo, Paolo Fornacciari, Monica Mordonini, Ilaria De Munari
IEEE Internet of Things Journal 2019
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Human Activity Recognition

Convolutional Neural Networks

Long-Short-Term Memory Networks

LR EPOCHS BATCH
CNN 0,0001 1000 600

LSTM 0,001 1000 600
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Human Activity Recognition

CONFRONTO LSTM - CNN (CASO REALE) TEST ROBUSTEZZA CNN ALLA VARIAZIONE DEI DATI

TEST 
ACCURACY

81%

VALIDATION 
ACCURACY

96.8%

TEST 
ACCURACY

79%

VALIDATION 
ACCURACY

95.1%

CNN

LSTM

Split 2:1 
Training set composto 
da 2 ripetizioni su 3 per 
ognuno dei 15 utenti.

Selezione Casuale
Training set composto 
dal 60% dei dati. test set 
composto dal 40% dei 
dati.
 
Caso Reale
Training set composto 
dalle ripetizioni di 10 
utenti su 15. Test set 
composto dai restanti 
cinque.
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CNN and RNN for Occupancy detection

● We have some sensors in a room and 
we measured:

○ Temperature,Humidity,Light,CO2
,HumidityRatio sampled each 
minute

○ We have also a target that is 
Occupancy 0 or 1 depending if 
someone is in the room or not. 
This variable is also samples 
each minute
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CNN and RNN for Occupancy detection
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CNN and RNN for Occupancy detection

CNN input shape

RNN input shape



 Gianfranco Lombardo, Ph.D  (gianfranco.lombardo@unipr.it)

CNN and RNN for Occupancy detection

10 minutes window
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See the code in the folder Occupancy for the CNN and LSTM implementation and 
for the dataset

CNN and RNN for Occupancy detection


