
Convolutional Neural
Networks

Gianfranco Lombardo, Ph.D
gianfranco.lombardo@unipr.it

DIPARTIMENTO DI INGEGNERIA E ARCHITETTURA

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Summary on Neural Networks

● Multilayer Perceptron (MLP)

● Functions approximation

● Generic classification tasks

● In the past used also for more
complex tasks with several
limits in the training phase

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

What about image classification and related tasks ?

● Multi-layer perceptron has been used
also for image analysis but with several
limits:

○ Memory constraints
○ Accuracy results often lower or

equal to other less complex
models (e.g Support Vector
Machine)

○ With high resolution images
training is often computationally
infeasible

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Solution: Convolutional Neural Network (CNN)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

What is a digital image ?

● Grey-scale images can be
viewed as a matrix of values
(pixels)

● Each pixel has a value
between 0 (black) and 255
(white)

● With the lack of colors we can
say that these images are
“single channel”

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

What is a digital image ?

c

● To have a color image we need more
channels to add these information

● For example RGB images can be
viewed as a tensor of values:
○ Each layer is a channel describing

a color component of the image
○ Dimension are Width X Height X

N o of Channels
○ Example:

32

32

= 32x32x3 = 3072 values

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Image classification with a Neural network

● The basic idea is “to flatten” the image matrix and using each value as an input xi of the
network

● Advantages: No preliminary feature extraction needed
○ Network learns its own feature analyzing the training set at each epoch

x1

w = 420

h
=

 7
20

1 ... 3

200 ... 123

...

14 ... 100

1 3 ... 100

x2 xi xn

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Let’s recap the basic concepts of a neuron

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Image classification with a Neural network

w = 1000

h
=

 1
00

0

● Images with a medium-low resolution of 1 megapixel
● The input matrix shape is 1000x1000x3
● X input matrix contains 3 millions of elements

○ Just consider the number of neurons in the first hidden layer
○ We need many neurons to increase network learning

capacity but there are some limits
■ Being J the number of neurons in layer 1
■ The weight matrix W of layer 1 has shape (J, 3x106)
■ If J=1000 -> W has 3 billions of elements
■ If J=100 -> W has 300 millions of elements

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Find a tradeoff !

● Using traditional Neural networks with high resolution and color images brings to:
○ Too many elements in weight matrix for each layer -> Difficult avoiding overfitting while

learning Wij elements with backpropagation algorithm if we do not have a HUGE number of
images

○ Memory requirements can become hard to be satisfied !

Possible tradeoffs:
● Use grey-scale images: Only 1 channel VS loss of information
● Use low resolution images: Possible in some contexts, reducing W matrix shape VS loss of information
● Increase hardware capacity: computational power VS costs

● Used in some real applications in 90s (e.g handwritten postcode recognition etc..)
○ Due to these limitations neural networks based systems have been abandoned for less complex

models until about our days with the advent of Deep Learning !!

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Not only computational limits !

Main advantage: Automatic feature
extraction

Issue: Loose of local information

● Visual features get extracted in an automatic way
by the Neural Network in the learning phase of
the inner weights

● No need of important pre-processing steps

● Difficult to understand which features have been
considered by the network !

● To increase network capacity in extracting
features we need several hidden layers and
neurons

● To fed the neural network we have to flatten
the image, losing its 2D structure

● It can affect results in an important way in
some kinds of classification tasks !

● In fact, in traditional Computer Vision models,
visual features get extracted by using Kernels
(or filters) and the convolutional operator
on images!

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Filters and convolution operator on images

● Manual extraction of visual features on images is usually conducted by convolving filters
(or kernels) on images

● Each desidered feature can be extracted by convolving the image with the appropriate
filter

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Filters and Convolution operator

● Convolution is the process of adding each element of the image to its local neighbors,
weighted by the filter

● The resulting image is obviously compressed in its dimension

3 0 1 2 7 4

1 5 8 9 3 1

2 7 2 5 1 3

0 1 3 1 7 8

4 2 1 6 2 8

2 4 5 2 3 9

1 0 -1

1 0 -1

1 0 -1

-5 -4 0 8

-10 -2 2 3

0 -2 -4 -7

-3 -2 -3 -16

* =
(3*1+0*0+1*-1) + (1*1+5*0+8*-1)+(2*1+7*0+2*-1) = -5

Convolution
operator

Image

Filter/Kernel

Convolved
features

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Filters and Convolution operator

● Convolution is the process of adding each element of the image to its local neighbors,
weighted by the filter

● The resulting image is obviously compressed in its dimension

1 0 -1

1 0 -1

1 0 -1
* =
(3*1+0*0+1*-1) + (1*1+5*0+8*-1)+(2*1+7*0+2*-1) = -5

Convolution
operator

Filter/Kernel

Convolved
features3 0 1 2 7 4

1 5 8 9 3 1

2 7 2 5 1 3

0 1 3 1 7 8

4 2 1 6 2 8

2 4 5 2 3 9

Image

-5 -4 0 8

-10 -2 2 3

0 -2 -4 -7

-3 -2 -3 -16

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Dimension of convolved feature ?

● Image has dimension mxn
● Filter has dimension fxf
● The resulting convolved feature has

dimension:
(m-f+1) x (n-f+1)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Example: Vertical edges detection

1 0 -1

1 0 -1

1 0 -1
*

Convolution
operator

Filter 3x3 for
vertical edgesImage

32x32

=
Image
30x30

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Convolution over volumes (RGB image)

Note: Filter’s channel number has to be equal to the number of image channels !

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Avoid the image shrinking output: Padding !

● Everytime we perform a convolution, we shrink the output image
● To avoid it, it is useful to pad the input image with other values at the border
● It helps also to keep more of the information at the border of the input image

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Strided convolution

● A variant of the classic convolution operator that consists in making some “jumps”
convolving the filter on the image

● It is like a shallow convolution that can permit us to increase or manage the shrinking of the
output

3 4 4

1 0 2

-1 0 3
* =

Filter
2 3 7 4 6 2 9

6 6 9 8 7 4 3

3 4 8 3 8 9 7

7 8 3 6 6 3 4

4 2 1 8 3 4 6

3 2 4 1 9 8 3

0 1 3 9 2 1 4

7x7 image

91 100 83

69 91 127

44 72 74

3x3 convolved image
instead of a 5x5

Stride S = 2

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Strided convolution

● A variant of the classic convolution operator that consists in making some “jumps”
convolving the filter on the image

● It is like a shallow convolution that can permit us to increase or manage the shrinking of the
output

3 4 4

1 0 2

-1 0 3
* =

Filter
2 3 7 4 6 2 9

6 6 9 8 7 4 3

3 4 8 3 8 9 7

7 8 3 6 6 3 4

4 2 1 8 3 4 6

3 2 4 1 9 8 3

0 1 3 9 2 1 4

7x7 image

91 100 83

69 91 127

44 72 74

3x3 convolved image
instead of a 5x5

Shrink S = 2

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Strided convolution

● A variant of the classic convolution operator that consists in making some “jumps”
convolving the filter on the image

● It is like a shallow convolution that can permit us to increase or manage the shrinking of the
output

3 4 4

1 0 2

-1 0 3
* =

Filter
2 3 7 4 6 2 9

6 6 9 8 7 4 3

3 4 8 3 8 9 7

7 8 3 6 6 3 4

4 2 1 8 3 4 6

3 2 4 1 9 8 3

0 1 3 9 2 1 4

7x7 image

91 100 83

69 91 127

44 72 74

3x3 convolved image
instead of a 5x5

Shrink S = 2

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

How to calculate the final dimension of the output image

● m : Width of the image
● n: Height of the image
● f : Dimension of the fxf filter

● p : Padding pixels
● s: Striding pixels
● Nf: Number of filters

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

So...let’s recap

● Automatic feature extraction while learning
network weights

● Flattening the image causes the loss of
local information

● Explosion of the computation complexity
due to the flatten image

● Once features have been extracted convolving the
appropriate filters on the images, we can use those
features to train an ad-hoc machine learning model
with different types of algorithms

○ The choose of the algorithm depends on the
target task

● The choice of the appropriate filters is not so
easy, we have to refer to literature or try to invent
our own filters !

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Why do not join these two approaches ?

● The perfect tradeoff would be:

○ Automatic feature extraction as in the Neural network model

○ Using kernels approach to reduce W matrix shapes in each layer and without losing local
information in the images

○ Learn automatically the appropriate filters as weights of the network

○ Consequently, carry out an automatic feature extraction based on kernels approach

Convolutional Neural Networks !!

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

BREAK

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Solution: Convolutional Neural Network (CNN)

● A Deep learning architecture proposed by Yann LeCun in 90s but only today it is trainable in an efficient
way and with several layers thanks to GPU’s

● It is bio-inspired, because the organization of the neurons resembles the organization of the animal
visual cortex

● Individual cortical neurons respond to stimuli only in a restricted region of the visual field known as the
receptive field. The receptive fields of different neurons partially overlap such that they cover the entire
visual field.

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

The convolutional layer

● In the convolutional layer, neurons are arranged in a 2D structure

● It is composed by two operators:
○ Convolution operator
○ Pooling operator

● Each layer has as input a tensor with shape (Width, Height, channels)

Image Convolution
with filters Pooling

Resulting image
(input for a new

layer)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Convolutional operator in the Convolutional layer

*

*
RGB image

Filters to learn Results of the
convolutions

● Weights to learn are the elements
of filters tensors

● Let’s call the result of the
interaction between input data and
weights Z = Input*Weights

● We also need to apply an activation
function to Z

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Convolutional operator in the Convolutional layer

+ b1

+ bj

*

*
RGB image

Filters to learn Results of the
convolutions

𝜎

𝜎

Activation
function

Image ready for
the next layer

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Shapes in the Convolutional Layer

+ b1

+ bj

*

*
Image 6x6x3

10 Filters 3x3x3 Results of each
convolution is 4x4

𝜎

𝜎

Activation
function

New image is
4x4x10

Note: At filters level we
have 28*10 parameters
independent from the
image shape !!!

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Comparison between Neurons and input data

𝜎
Activation
function

+ b1* Not YET the
exact activation

of neuron i
of layer jZ

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

The pooling operator

● Last step of the Convolutional layer
● It doesn’t learn any parameters but makes network computation faster by reducing the dimension

of the representations
● It is also useful for the network to summarize the feature learned by each neuron to make these

features more robust

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

The pooling operators

● Most used
● Max-pooling layer: slides an (f,f) window over

the input and stores the max value of the
window in the output.

● Average-pooling layer: slides an (f,f)
window over the input and stores the
average value of the window in the
output.

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Tips: Convolutional Neural Network

● Going in deep with several conv-layers, the image size get reduced while the numbers of filters
increase to distinguish more complex and high level features

● Then the resulting image is flattened to be fed into the last layers (Fully connected or Dense) that
are traditional Multi-layer perceptron layers

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Inside a CNN

● http://scs.ryerson.ca/~aharley/vis/conv/flat.html : Online simulator of number recognition with CNN, useful
to understand what happens inside the network and which features get extracted by convolutions

http://scs.ryerson.ca/~aharley/vis/conv/flat.html

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

CNN in Keras

from tensorflow.keras import models
from tensorflow.keras import layers

network = models.Sequential() #initialize the neural network

network.add(layers.Conv2D(N°of filters, (f, f), activation='relu', input_shape=(width, height, N°of channels))) # Convolution
operator
network.add(layers.MaxPooling2D((fw, fw))) #Pooling operator
For the other convolutional layers the input shape is automatically calculated but PAY ATTENTION
network.add(layers.Conv2D(64, (3, 3), activation='relu'))
network.add(layers.MaxPooling2D((2, 2)))

network.add(layers.Flatten()) #Flatten the image
network.add(layers.Dense(N°neurons, activation='relu')) #Fully connected layers as in normal neural networks
network.add(layers.Dense(10, activation='softmax'))
network.summary() # Shows information about layers and parameters of the entire network

Convolutional layer

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Benefits of Convolutional Neural Networks

● Less parameters respect to Multy-layer perceptron, risk of overfitting is reduced (but still a problem)

● Parameters sharing: Filters (as feature detector) convolve the entire image
○ The idea is that if a feature detector is useful in one part of the image, it is probably useful also in

other parts of the image

● Sparsity of connections: In each layer, each output values depends only on a small number of inputs
and not on the entire image! (Benefit due to the use of filters)

● Learning as an optimization problem the filters value, it is possible to learn feature detectors for
example for vertical, horizontal and diagonal edges at the same time

○ The most important consequence is that extracted features are Translational invariance

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

How to choose parameters ?

● There is no a formal rule to select hyperparameters ! Design a Deep learning model is more like an art
based on the experience.

● Some general tips:
○ Image shape shrinks going deeper in the network while the number of filters increase (but not the

shape)

○ More conv-layers help the network to extract more robust feature. However if you do not have an
huge dataset the overfitting risk is still high!

○ Do not underestimate the importance of Pooling operator to make feature more robust!

○ If you do not have a very huge dataset use the Dropout technique before the last layers

○ Last layers are usually dense (or fully connected) to help the network to classify

○ Hyperparameters can be estimated using also a Grid search or a Random search

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Existing CNN architectures in Deep learning literature

● LeNet-5 (1998 Yann LeCun)

● AlexNet (2012 Alex Krizhevsky, Geoffrey Hinton)

● GoogleNet (2014)

● VGGNet(2014 Simonyan and Zisserman)

● ResNet (2015 Kaiming He)

● This list is not exhaustive

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

LeNet

● Used for the MNIST dataset by Yann
LeCun

● 3 Convolutional layers (C1+S2 , C3+S4,
C5)

● After C5 images get flatten in 120
● F6 is a dense layer as F7(output)

● Nowadays ReLU is more suggested than
tanh as activation function and also
MaxPooling instead of Average Pooling

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

LeNet-5 in Keras

from tensorflow.keras import models
from tensorflow.keras import layers

network = models.Sequential() #initialize the neural network
network.add(layers.Conv2D(6, kernel_size=(5, 5), strides=(1, 1), activation='tanh', input_shape=input_shape, padding="same"))

network.add(layers.AveragePooling2D(pool_size=(2, 2), strides=(1, 1), padding='valid'))

network.add(layers.Conv2D(16, kernel_size=(5, 5), strides=(1, 1), activation='tanh', padding='valid'))

network.add(layers.AveragePooling2D(pool_size=(2, 2), strides=(2, 2), padding='valid'))

network.add(layers.Conv2D(120, kernel_size=(5, 5), strides=(1, 1), activation='tanh', padding='valid'))

network.add(layers.Flatten())

network.add(layers.Dense(84, activation='tanh'))

network.add(layers.Dense(nb_classes, activation='softmax'))

network.summary() # Shows information about layers and parameters of the entire network

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

AlexNet

● More recent architecture

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

VGGNet

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

GoogleNet

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Can we use CNNs for time series? A real case

● 15 Utenti
● 3 Protocolli di attività
● 3 Dispositivi MuSA
● 3 Sensori per dispositivo

Sdraiarsi a terra (9)

 Seduto (4)

 Fermo in piedi (2)

 Camminare (1)

 Correre (6)

 Salire le scale (8)

 Scendere le scale (7)

Alzarsi in piedi (5)
Sedersi (3)

1 2 3 4 5
6 7 8 9

A
ccelerom

etro
G

iroscopio
M

agnetom
etro

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Human Activity Recognition

● Campionamento:
○ Frequenza: 50Hz
○ Finestra: 2.56s (128 campioni)
○ Overlap al 50%

15616

2.56 secondi

IoT wearable sensor and deep learning: An integrated approach for personalized human
activity recognition in a smart home environment
Valentina Bianchi, Marco Bassoli, Gianfranco Lombardo, Paolo Fornacciari, Monica Mordonini, Ilaria De Munari
IEEE Internet of Things Journal 2019

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Human Activity Recognition

Convolutional Neural Networks

Long-Short-Term Memory Networks

LR EPOCHS BATCH
CNN 0,0001 1000 600

LSTM 0,001 1000 600

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Human Activity Recognition

CONFRONTO LSTM - CNN (CASO REALE) TEST ROBUSTEZZA CNN ALLA VARIAZIONE DEI DATI

TEST
ACCURACY

81%

VALIDATION
ACCURACY

96.8%

TEST
ACCURACY

79%

VALIDATION
ACCURACY

95.1%

CNN

LSTM

Split 2:1
Training set composto
da 2 ripetizioni su 3 per
ognuno dei 15 utenti.

Selezione Casuale
Training set composto
dal 60% dei dati. test set
composto dal 40% dei
dati.

Caso Reale
Training set composto
dalle ripetizioni di 10
utenti su 15. Test set
composto dai restanti
cinque.

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

CNN and RNN for Occupancy detection

● We have some sensors in a room and
we measured:

○ Temperature,Humidity,Light,CO2
,HumidityRatio sampled each
minute

○ We have also a target that is
Occupancy 0 or 1 depending if
someone is in the room or not.
This variable is also samples
each minute

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

CNN and RNN for Occupancy detection

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

CNN and RNN for Occupancy detection

CNN input shape

RNN input shape

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

CNN and RNN for Occupancy detection

10 minutes window

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

See the code in the folder Occupancy for the CNN and LSTM implementation and
for the dataset

CNN and RNN for Occupancy detection

