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● Hands-On Machine Learning with Scikit-learn & Tensorflow - Aurèlien Gèron - Book 
(O’Reilly editor)

● Deep Learning - Ian Goodfeelow, Yoshua Bengio and Aaron Courville
● Pattern Recognition and Machine Learning - Christopher Bishop
● Dive into Deep Learning - Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. 

Smola(Free book: https://d2l.ai/ )
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Why Deep Learning ?
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● The term “Deep Learning “ refers to the training and use of different type of 
Neural network models that are characterized by several layers of neurons 
(deep)

● Several models belong to this group:
○ Multi-layer Perceptron with several hidden layers
○ Convolutional Neural Networks (CNN)
○ Recurrent Neural Networks (RNN)
○ Auto-encoder for unsupervised learning
○ Graph Neural Network (GNN)
○ Graph Convolutional Network (GCN)
○ Transformers and Attention Models
○ Others

Deep Neural Networks
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● Network of neurons (about 1011 in humans)

● Each neuron receives impulses from dendrites

● Soma is excited from these impulses and it propagates a new electric signal 
through the axon to other neurons

Biological neural networks 
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● Artificial Neural Network(ANN): Computational paradigm inspired by a 
mathematical model of the neuron (McCulloch & Pitts 1943) devised to study 
the computational abilities of biological neurons and neural networks.

● It takes inspiration from the architecture of human brain for building an 
intelligent machine.

● Network of nodes (artificial neurons)

Artificial Neural Network (ANN)
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Towards the Artificial Neuron
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Towards the Artificial Neuron
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● To simulate the biological neuron’s behavior we should collect and accumulate the 
input from the “dendrites”. We can do a weighted sum of the inputs by associating a 
weight w to each connection
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Towards the Artificial Neuron
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● So we have: w1x1 + w2 x2+ w3 x3+ w4x4 + w5 x5  

● This weighted sum can be written as  WT X, Does it remind you of anything?
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● …...
● In our case let’s consider the equation of a line 

○ y = mx + q
■ Where m is the slope
■ q is the intercept

● If we write that equation as  y = w1 X + w0
○ y is our target output
○ X is our feature vector
○ W are the two parameters that we have to learn

● If X0=1 we can write the equation as Y = WT X

Reminder from previous lessons: Linear model
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Something missing?
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● We are missing the “intercept” parameter to have the linear model equation
● Let’s add another input b called “bias” to play this role. Usually b=1
●  WT X + b 
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● What’s new? Until now we are practically speaking about a Linear Regression

● Indeed, a neuron to accumulate stimuli from dendrites (input features X) 
exploits a linear model

● After that, we have to decide what is the output of the neuron along the axon
○ We can apply a linear or non-linear function to the result of the linear 

model to define the output of the neuron (The Activation)

Towards the Artificial Neuron
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● An artificial neuron is a function that maps an input vector {x1, …, xk} to a scalar output y via 
a weight vector {w1, …, wk} and a function f (typically non-linear).

● Where the input vector represents the dendrites

● The output scalar value represents the activation of the neuron and the signal propagated 
over the axon

● Neuron receives all the stimuli (vector X), it computes a weighted sum and then applies an 
activation function that defines a threshold to define the output value

Artificial Neuron

ai
j
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Activation function

● The function f is called the activation function and generates a non-linear input/output 
relationship. 

● A common choice for the activation function is the Logistic function (or Sigmoid).

Sigmoid

● In this way our neuron will have an output between 0 and 1
● Practically is a Logistic Regression 
● But we will see that is not the only option we have 
● In general Neuron := Linear + activation
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More neurons: A layer
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a1 = 𝞼(W1
T X + b1)

a2 = 𝞼(W2
T X + b2)

an = 𝞼(Wn
T X + b3)



 Gianfranco Lombardo, Ph.D  (gianfranco.lombardo@unipr.it)

Artificial Neural Network (ANN)

● Neurons in the same layer 
don’t have to communicate 
with each other

● Each neuron at layer j -1 is 
connected with all the 
neurons in the next layer j
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Artificial Neural Network (ANN)

● Each connection between input 
and neurons, and between 
neurons and neurons has an 
associated weight w

● Weights are randomly initialized

● Our goal during the training 
step is to learn these weights

● All weights between two layers 
are organized in a matrix W
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The output layer

● We should say something more about the output layer.
● The structure of this last layer depends on the task you want to 

perform.
● y in our dataset has to be formatted depending on this layer
● Usually the number of neurons is equal to the number of expected 

possible outputs, but we should pay attention:

○ Regression: For example price prediction of a house, we need 
only one neuron with an activation function that is able to 
produce the value we need (for example a linear function)

○ Binary classification: We can have one neuron with a sigmoid 
activation function. But it is not the only possibility!

○ Multi-class or multi-label classification : We will have a 
number of neurons equal to the number of the possible classes. 
Each neuron is like a binary classifier.
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BREAK
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Some examples: Iris classification

Sepal length
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Input layer
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Some examples: Iris classification
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Some examples: Iris classification

Sepal length

Sepal width
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Some examples: Iris classification
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Some examples: Iris classification
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● Now we want to add the 
output layer to make 
predictions

● How many neurons we 
need ?
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Some examples: Iris classification
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Another example: House price prediction

Square meters

N° bedrooms

N° Rooms

Input layer

Bias term 

1°Hidden layer

Bias term 

Output Layer

is the Sigmoid 
Activation function

is the Linear Activation 
function

Price of the house

● In this case of regression 
we need only one neuron 
for the output layer since 
we have to predict only 
one value

● We cannot use the 
Sigmoid activation function 
since the value we are 
predicting is not between 
0-1 but can be any value
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Activation functions in Neural networks

Linear Activation Sigmoid Activation

ReLU Activation

f(u) = u  

f(u) = max(0,u)

Tanh Activation
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Note: The Latent representation (Embedding)

Sepal length
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Latent representation
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Note: The Latent representation (Embedding)
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Note: The Latent representation (Embedding)

● a1
j   and a2

j  represent the resulting Latent representation that the ANN learnt about 
the input

● Supervised training leads to a representation of the input at each layer of the ANN

● The representation in the last hidden layer usually has the property  of make the 
classification/regression task easier

● This capability of the Neural Network is called “Representation Learning”
● Several application:

○ Dimensionality reduction
○ Anomaly detection and Signal reconstruction
○ Representation of items that are not naturally a vector (Graphs, words etc..)
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The Softmax output layer: Only for Classification!

● When the classes are exclusive (class 0 is a dog, class 1 is a 
cat, class 2 is a mouse) and the problem is not multi-label ( to 
each sample we assign one and only one label, another type of 
neuron is used

● We can replace individual activation functions with a shared 
Softmax function

● The output of each neuron corresponds to the estimated 
probability of the corresponding class

● The Softmax function is a generalization of Logistic Regression 
in order to support multiple classes directly without having to 
train and combine multiple binary classifiers
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The Softmax output layer

● The idea is the following: 
○ Given an instance x or its representation in the penultimate layer of a neural network
○ The Softmax model compute a score sk(x) for each class k
○ Then it estimates the probability of each class by applying the softmax function to these 

scores

● sk(x) = W(k) T X    (Remember logistic for binary classification?)
○ Each class has its own dedicated parameter vector W(k)

● Now we can compute the probability pk that the instance belongs to class k

● It predicts the class with the highest probability (class with the highest score)
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Neural networks: Optimization problem

● Our goal is to minimize an objective function, which 
measures the difference between the actual output t and the 
predicted output y.

○ In this case we will consider as the objective function 
the squared loss function.

Squared loss 
function
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Loss functions

Mean squared errorSquared loss function

 

Mean absolute error
  

Kullback Leibler divergenceCross entropy Cosine proximity
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● For Regression task
○ Mean Squared Error Loss
○ Mean Absolute Error Loss

● For Binary Classification 
○ Binary Cross-Entropy

● For Multi-Class Classification 
○ Multi-Class Cross-Entropy Loss
○ Kullback Leibler Divergence Loss

● Note: This list is not exhaustive

Loss functions 
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Training the ANN: The Backpropagation algorithm

wi

1. We initialize the ANN with random weights w
2. We propagate each example through the network from the 

input layer (left) to the output layer (right) and we get a 
prediction (y)

3. Once at the end we can compute the prediction error as the 
difference between y true (t) and y predicted (y)

4. We measure the error (y-t) and to reduce it we want to update 
all the weights responsible of this error  in the network.

5. So we propagate the error back from the output to the input. 
From right to left.
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Backpropagation

wi

● The error gets propagated backwards throughout the 
network’s layers in order to update the weights.

● To understand how much we have to change the 
single weight we compute the gradient

● The gradient of the error with respect to the weights 
connecting a hidden layer with the next one depends 
(only) on the gradients of the neurons that are closer 
to the output layer than it is, which can be computed 
starting from the output layer and going backwards.
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Backprop: Gradient descent

● We want to find the weights {w1,...,wk} 
such that the objective function is 
minimized.

● We do this with Gradient Descent (GD):

○ Iterative optimization algorithm 
used in machine learning to find the 
best results (minima of a curve).

○ Compute the gradient of the 
objective function with respect to an 
element wi of the vector {w1,...,wk}.

wi

E
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Gradient descent

 

Sigmoid activationSquared Loss

Chain rule
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Gradient descent
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Gradient descent

Gradient descent

● Let’s update the weights using the gradient 
descent update equation (in vector notation)

● η > 0 is the step size 🡪 Learning Rate

wi

E

 

 

For all the weights
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Activation functions in Neural networks

Linear Activation Sigmoid Activation Tanh Activation

ReLU Activation

f(u) = u   

f(u) = max(0,u)

● Avoid vanishing gradient in flat 
components of activation 
functions
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● Hyperparameters are the parameters which determine the network structure 
(e.g. Number of Hidden Units) and the parameters which determine how the 
network is trained (e.g. Learning Rate)

○ Number of neurons 

○ Number of layers

○ Learning rate

○ Batch size

○ Number of epochs

○ others 

Hyper-parameters
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Learning rate

● Training parameter that controls the size 
of weight changes in the learning phase 
of the training algorithm.

● The learning rate determines how much 
an updating step influences the current 
value of the weights.

Many updates 
required before 
reaching the 
minimum.

Drastic updates 
can lead to 
divergent 
behaviors, 
missing the  
minimum.

Very small learning rate

Too big learning rate

 



 Gianfranco Lombardo, Ph.D  (gianfranco.lombardo@unipr.it)

Hyper-parameters

Number of epochs

● The number of epochs is the number 
of times the whole training data is 
shown to the network while training.

Batch size

● The number of samples shown to 
the network before the gradient 
computation and the parameter 
update.

● Remember that at the beginning 
weights are randomly initialized. Our 
training is sensitive to this initialization

Gradient 
Descent

Batch 
Gradient 
Descent

Stochastic
Gradient
Descent
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Validation set

● Data set with the ‘same’ goal of the 
test set (verifying the quality of the 
model which has been learnt), but 
not as a final evaluation, but as a 
way to fine-tune the model.

● Its aim is to provide a feedback 
which allows one to find the best 
settings for the learning algorithm 
(parameter tuning).
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● Early stopping is a  form of regularization used to avoid overfitting when training a learner 
with an iterative method, such as gradient descent

● Stop training as soon as the error on the validation set is higher than it was the last time it 
was checked
○ We can define a patient parameters: We accept that a patient number of times the 

validation error can be higher than the previous iteration. After this number is reached, 
training will be stopped.

● Use the weights the network had in that previous step as the result of the training run

Early stopping
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Dropout

• It is another form of regularization 
for Neural Networks

• At each update during training 
time, randomly setting a fraction 
rate of input units to 0.

• It helps to prevent overfitting.
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BREAK
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● To minimize the loss we don’t have only Gradient Descent or Stochastic 
Gradient Descent (SGD). 

● Other gradient-based optimizers are available, in particular in Keras such as:

○ RMSprop

○ Adam

● It is important to deeply understand the problem we are dealing with when we 
have to choose the loss function and the best optimizer for our task

Choosing the Loss function and the best optimizer
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● Keras is an open-source library that provides tools to develop artificial neural 
networks

● Keras acts as an interface for the TensorFlow library

● First install TensorFlow: pip install tensorflow 

● Then pip install Keras (Optional with the latest version of Tensorflow)

Keras
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Example: breast cancer classification

from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt

import tensorflow as tf
from tensorflow.keras import models
from tensorflow.keras import layers



 Gianfranco Lombardo, Ph.D  (gianfranco.lombardo@unipr.it)

Example: breast cancer classification

X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, 
test_size=0.20)

print("Training set dimensions (train_data):")
print(X_train.shape)
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Example: breast cancer classification

model = models.Sequential()
#The first layer that you define is the input layer. This 
layer needs to know the input dimensions of your data.
# Dense = fully connected layer (each neuron is fully 
connected to all neurons in the previous layer)
model.add(layers.Dense(64, activation='relu', 
input_shape=(X_train.shape[1],)))
# Add one hidden layer (after the first layer, you don't need 
to specify the size of the input anymore)
model.add(layers.Dense(64, activation='relu'))
# If you don't specify anything, no activation is applied (ie. 
"linear" activation: a(x) = x)
model.add(layers.Dense(1,activation='sigmoid'))
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Example: breast cancer classification

model.compile(loss='binary_crossentropy', optimizer='adam', 
metrics=[tf.keras.metrics.Precision()])

# Fit the model to the training data and record events into a 
History object.
history = model.fit(X_train, y_train, epochs=10, batch_size=1, 
validation_split=0.2, verbose=1)

# Model evaluation
test_loss,test_pr = model.evaluate(X_test,y_test)
print(test_pr)



 Gianfranco Lombardo, Ph.D  (gianfranco.lombardo@unipr.it)

Breast cancer: Plot Loss VS Epochs

# Plot loss (y axis) and epochs (x axis) for training set and 
validation set
plt.figure()
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.plot(history.epoch, 
np.array(history.history['loss']),label='Train loss')
plt.plot(history.epoch, 
np.array(history.history['val_loss']),label = 'Val loss')
plt.legend()
plt.show()
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opt = keras.optimizers.Adam(lr=0.01)
model.compile(loss='binary_crossentropy',optimizer=opt, metrics=[...])

Setting learning rate and optimizer

Available optimizers:
https://keras.io/api/optimizers/

https://keras.io/api/optimizers/adam/
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Modifications to use Softmax (Suggested for Multi-class problems)

from tensorflow.keras.utils import to_categorical
y = to_categorical(y)

…
…
…

model.add(layers.Dense(2,activation='softmax'))

● Now our y is a matrix with a number of columns equal to the number of possible classes
● The column value is equal to 0 or 1 depending on the class associated to that example (row)
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Example: Boston regression

from sklearn.datasets import load_boston
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt

from tensorflow.keras import models
from tensorflow.keras import layers
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Example: Boston regression

X, y = load_boston(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, 
test_size=0.20)

print("Training set dimensions (train_data):")
print(X_train.shape)
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Example: Boston regression

model = models.Sequential()
model.add(layers.Dense(64, 
activation='relu',input_shape=(X_train.shape[1],)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(1,activation='relu'))
model.compile(optimizer='rmsprop', loss='mse', metrics=['mse'])

history = model.fit(X_train, y_train, epochs=10, batch_size=1, 
validation_split=0.2, verbose=1)
test_loss_score, test_mse_score = model.evaluate(test_data, 
test_targets)

# MSE
print(test_mse_score)
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https://keras.io/api/metrics/

Possible metrics
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● Dropout is a simple layer you should add
○ model.add(layers.Dropout(VALUE between 0 and 1))

● Early stopping is a callback

from keras.callbacks import EarlyStopping (for new version try tf.keras)
es = EarlyStopping(monitor='val_loss',mode='min', verbose=1, patience= 10)
….
model.fit(X_train, Y_train,epochs=300,validation_data=(X_val, Y_val),callbacks=[es])

Dropout, early stopping and validation data


