
An introduction to
Neural Networks

Gianfranco Lombardo, Ph.D
gianfranco.lombardo@unipr.it

DIPARTIMENTO DI INGEGNERIA E ARCHITETTURA

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Hands-On Machine Learning with Scikit-learn & Tensorflow - Aurèlien Gèron - Book
(O’Reilly editor)

● Deep Learning - Ian Goodfeelow, Yoshua Bengio and Aaron Courville
● Pattern Recognition and Machine Learning - Christopher Bishop
● Dive into Deep Learning - Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J.

Smola(Free book: https://d2l.ai/)

References

https://d2l.ai/

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Why Deep Learning ?

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● The term “Deep Learning “ refers to the training and use of different type of
Neural network models that are characterized by several layers of neurons
(deep)

● Several models belong to this group:
○ Multi-layer Perceptron with several hidden layers
○ Convolutional Neural Networks (CNN)
○ Recurrent Neural Networks (RNN)
○ Auto-encoder for unsupervised learning
○ Graph Neural Network (GNN)
○ Graph Convolutional Network (GCN)
○ Transformers and Attention Models
○ Others

Deep Neural Networks

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Network of neurons (about 1011 in humans)

● Each neuron receives impulses from dendrites

● Soma is excited from these impulses and it propagates a new electric signal
through the axon to other neurons

Biological neural networks

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Artificial Neural Network(ANN): Computational paradigm inspired by a
mathematical model of the neuron (McCulloch & Pitts 1943) devised to study
the computational abilities of biological neurons and neural networks.

● It takes inspiration from the architecture of human brain for building an
intelligent machine.

● Network of nodes (artificial neurons)

Artificial Neural Network (ANN)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Towards the Artificial Neuron

D
endrites

Axon
Neuron

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Towards the Artificial Neuron

Fe
at

ur
es

 X

ai Activation of neuron i
Neuron

X1
X2

X3X4

X5

● To simulate the biological neuron’s behavior we should collect and accumulate the
input from the “dendrites”. We can do a weighted sum of the inputs by associating a
weight w to each connection

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Towards the Artificial Neuron

Fe
at

ur
es

 X

ai Activation of neuron i
Neuron

X1

X2

X3

X4

X5

● So we have: w1x1 + w2 x2+ w3 x3+ w4x4 + w5 x5

● This weighted sum can be written as WT X, Does it remind you of anything?

w1

w2
w3

w4

w5

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● …...
● In our case let’s consider the equation of a line

○ y = mx + q
■ Where m is the slope
■ q is the intercept

● If we write that equation as y = w1 X + w0
○ y is our target output
○ X is our feature vector
○ W are the two parameters that we have to learn

● If X0=1 we can write the equation as Y = WT X

Reminder from previous lessons: Linear model

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Something missing?

Fe
at

ur
es

 X

ai Activation of neuron i
Neuron

X1

X2

X3

X4

X5

● We are missing the “intercept” parameter to have the linear model equation
● Let’s add another input b called “bias” to play this role. Usually b=1
● WT X + b

w1

w2
w3

w4

w5

b

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● What’s new? Until now we are practically speaking about a Linear Regression

● Indeed, a neuron to accumulate stimuli from dendrites (input features X)
exploits a linear model

● After that, we have to decide what is the output of the neuron along the axon
○ We can apply a linear or non-linear function to the result of the linear

model to define the output of the neuron (The Activation)

Towards the Artificial Neuron

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● An artificial neuron is a function that maps an input vector {x1, …, xk} to a scalar output y via
a weight vector {w1, …, wk} and a function f (typically non-linear).

● Where the input vector represents the dendrites

● The output scalar value represents the activation of the neuron and the signal propagated
over the axon

● Neuron receives all the stimuli (vector X), it computes a weighted sum and then applies an
activation function that defines a threshold to define the output value

Artificial Neuron

ai
j

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Activation function

● The function f is called the activation function and generates a non-linear input/output
relationship.

● A common choice for the activation function is the Logistic function (or Sigmoid).

Sigmoid

● In this way our neuron will have an output between 0 and 1
● Practically is a Logistic Regression
● But we will see that is not the only option we have
● In general Neuron := Linear + activation

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

More neurons: A layer

X1

X2

Xn

a1 = 𝞼(W1
T X + b1)

a2 = 𝞼(W2
T X + b2)

an = 𝞼(Wn
T X + b3)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Artificial Neural Network (ANN)

● Neurons in the same layer
don’t have to communicate
with each other

● Each neuron at layer j -1 is
connected with all the
neurons in the next layer j

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Artificial Neural Network (ANN)

● Each connection between input
and neurons, and between
neurons and neurons has an
associated weight w

● Weights are randomly initialized

● Our goal during the training
step is to learn these weights

● All weights between two layers
are organized in a matrix W

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

The output layer

● We should say something more about the output layer.
● The structure of this last layer depends on the task you want to

perform.
● y in our dataset has to be formatted depending on this layer
● Usually the number of neurons is equal to the number of expected

possible outputs, but we should pay attention:

○ Regression: For example price prediction of a house, we need
only one neuron with an activation function that is able to
produce the value we need (for example a linear function)

○ Binary classification: We can have one neuron with a sigmoid
activation function. But it is not the only possibility!

○ Multi-class or multi-label classification : We will have a
number of neurons equal to the number of the possible classes.
Each neuron is like a binary classifier.

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

BREAK

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Some examples: Iris classification

Sepal length

Sepal width

Petal length

Petal width

Input layer

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Some examples: Iris classification

Sepal length

Sepal width

Petal length

Petal width

Input layer 1°Hidden layer

Sa
m

pl
e

fe
at

ur
es

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Some examples: Iris classification

Sepal length

Sepal width

Petal length

Petal width

Input layer

Bias term = 1

1°Hidden layer

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Some examples: Iris classification

Sepal length

Sepal width

Petal length

Petal width

Input layer

Bias term

1°Hidden layer

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Some examples: Iris classification

Sepal length

Sepal width

Petal length

Petal width

Input layer

Bias term

1°Hidden layer 2°Hidden layer

Bias term

● Now we want to add the
output layer to make
predictions

● How many neurons we
need ?

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Some examples: Iris classification

Sepal length

Sepal width

Petal length

Petal width

Input layer

Bias term

1°Hidden layer 2°Hidden layer

Bias term Bias term

Versicolor

Virginica

Setosa

Output Layer

is the Sigmoid
Activation function

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Another example: House price prediction

Square meters

N° bedrooms

N° Rooms

Input layer

Bias term

1°Hidden layer

Bias term

Output Layer

is the Sigmoid
Activation function

is the Linear Activation
function

Price of the house

● In this case of regression
we need only one neuron
for the output layer since
we have to predict only
one value

● We cannot use the
Sigmoid activation function
since the value we are
predicting is not between
0-1 but can be any value

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Activation functions in Neural networks

Linear Activation Sigmoid Activation

ReLU Activation

f(u) = u

f(u) = max(0,u)

Tanh Activation

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Note: The Latent representation (Embedding)

Sepal length

Sepal width

Petal length

Petal width

Input layer Last hidden
layer

Bias term Bias term

Versicolor

Virginica

Setosa

Output Layer

.

Latent representation

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Note: The Latent representation (Embedding)

Last hidden
layer (Layer j)

Versicolor

Virginica

Setosa

Output Layer

a1
j
 w1

j

a1
j
 w2

j

a
1

j
 w3

j

a2
j

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Note: The Latent representation (Embedding)

● a1
j and a2

j represent the resulting Latent representation that the ANN learnt about
the input

● Supervised training leads to a representation of the input at each layer of the ANN

● The representation in the last hidden layer usually has the property of make the
classification/regression task easier

● This capability of the Neural Network is called “Representation Learning”
● Several application:

○ Dimensionality reduction
○ Anomaly detection and Signal reconstruction
○ Representation of items that are not naturally a vector (Graphs, words etc..)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

The Softmax output layer: Only for Classification!

● When the classes are exclusive (class 0 is a dog, class 1 is a
cat, class 2 is a mouse) and the problem is not multi-label (to
each sample we assign one and only one label, another type of
neuron is used

● We can replace individual activation functions with a shared
Softmax function

● The output of each neuron corresponds to the estimated
probability of the corresponding class

● The Softmax function is a generalization of Logistic Regression
in order to support multiple classes directly without having to
train and combine multiple binary classifiers

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

The Softmax output layer

● The idea is the following:
○ Given an instance x or its representation in the penultimate layer of a neural network
○ The Softmax model compute a score sk(x) for each class k
○ Then it estimates the probability of each class by applying the softmax function to these

scores

● sk(x) = W(k) T X (Remember logistic for binary classification?)
○ Each class has its own dedicated parameter vector W(k)

● Now we can compute the probability pk that the instance belongs to class k

● It predicts the class with the highest probability (class with the highest score)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Neural networks: Optimization problem

● Our goal is to minimize an objective function, which
measures the difference between the actual output t and the
predicted output y.

○ In this case we will consider as the objective function
the squared loss function.

Squared loss
function

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Loss functions

Mean squared errorSquared loss function

Mean absolute error

Kullback Leibler divergenceCross entropy Cosine proximity

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● For Regression task
○ Mean Squared Error Loss
○ Mean Absolute Error Loss

● For Binary Classification
○ Binary Cross-Entropy

● For Multi-Class Classification
○ Multi-Class Cross-Entropy Loss
○ Kullback Leibler Divergence Loss

● Note: This list is not exhaustive

Loss functions

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Training the ANN: The Backpropagation algorithm

wi

1. We initialize the ANN with random weights w
2. We propagate each example through the network from the

input layer (left) to the output layer (right) and we get a
prediction (y)

3. Once at the end we can compute the prediction error as the
difference between y true (t) and y predicted (y)

4. We measure the error (y-t) and to reduce it we want to update
all the weights responsible of this error in the network.

5. So we propagate the error back from the output to the input.
From right to left.

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Backpropagation

wi

● The error gets propagated backwards throughout the
network’s layers in order to update the weights.

● To understand how much we have to change the
single weight we compute the gradient

● The gradient of the error with respect to the weights
connecting a hidden layer with the next one depends
(only) on the gradients of the neurons that are closer
to the output layer than it is, which can be computed
starting from the output layer and going backwards.

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Backprop: Gradient descent

● We want to find the weights {w1,...,wk}
such that the objective function is
minimized.

● We do this with Gradient Descent (GD):

○ Iterative optimization algorithm
used in machine learning to find the
best results (minima of a curve).

○ Compute the gradient of the
objective function with respect to an
element wi of the vector {w1,...,wk}.

wi

E

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Gradient descent

Sigmoid activationSquared Loss

Chain rule

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Gradient descent

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Gradient descent

Gradient descent

● Let’s update the weights using the gradient
descent update equation (in vector notation)

● η > 0 is the step size 🡪 Learning Rate

wi

E

For all the weights

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Activation functions in Neural networks

Linear Activation Sigmoid Activation Tanh Activation

ReLU Activation

f(u) = u

f(u) = max(0,u)

● Avoid vanishing gradient in flat
components of activation
functions

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Hyperparameters are the parameters which determine the network structure
(e.g. Number of Hidden Units) and the parameters which determine how the
network is trained (e.g. Learning Rate)

○ Number of neurons

○ Number of layers

○ Learning rate

○ Batch size

○ Number of epochs

○ others

Hyper-parameters

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Learning rate

● Training parameter that controls the size
of weight changes in the learning phase
of the training algorithm.

● The learning rate determines how much
an updating step influences the current
value of the weights.

Many updates
required before
reaching the
minimum.

Drastic updates
can lead to
divergent
behaviors,
missing the
minimum.

Very small learning rate

Too big learning rate

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Hyper-parameters

Number of epochs

● The number of epochs is the number
of times the whole training data is
shown to the network while training.

Batch size

● The number of samples shown to
the network before the gradient
computation and the parameter
update.

● Remember that at the beginning
weights are randomly initialized. Our
training is sensitive to this initialization

Gradient
Descent

Batch
Gradient
Descent

Stochastic
Gradient
Descent

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Validation set

● Data set with the ‘same’ goal of the
test set (verifying the quality of the
model which has been learnt), but
not as a final evaluation, but as a
way to fine-tune the model.

● Its aim is to provide a feedback
which allows one to find the best
settings for the learning algorithm
(parameter tuning).

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Early stopping is a form of regularization used to avoid overfitting when training a learner
with an iterative method, such as gradient descent

● Stop training as soon as the error on the validation set is higher than it was the last time it
was checked
○ We can define a patient parameters: We accept that a patient number of times the

validation error can be higher than the previous iteration. After this number is reached,
training will be stopped.

● Use the weights the network had in that previous step as the result of the training run

Early stopping

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Dropout

• It is another form of regularization
for Neural Networks

• At each update during training
time, randomly setting a fraction
rate of input units to 0.

• It helps to prevent overfitting.

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

BREAK

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● To minimize the loss we don’t have only Gradient Descent or Stochastic
Gradient Descent (SGD).

● Other gradient-based optimizers are available, in particular in Keras such as:

○ RMSprop

○ Adam

● It is important to deeply understand the problem we are dealing with when we
have to choose the loss function and the best optimizer for our task

Choosing the Loss function and the best optimizer

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Keras is an open-source library that provides tools to develop artificial neural
networks

● Keras acts as an interface for the TensorFlow library

● First install TensorFlow: pip install tensorflow

● Then pip install Keras (Optional with the latest version of Tensorflow)

Keras

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Example: breast cancer classification

from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt

import tensorflow as tf
from tensorflow.keras import models
from tensorflow.keras import layers

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Example: breast cancer classification

X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.20)

print("Training set dimensions (train_data):")
print(X_train.shape)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Example: breast cancer classification

model = models.Sequential()
#The first layer that you define is the input layer. This
layer needs to know the input dimensions of your data.
Dense = fully connected layer (each neuron is fully
connected to all neurons in the previous layer)
model.add(layers.Dense(64, activation='relu',
input_shape=(X_train.shape[1],)))
Add one hidden layer (after the first layer, you don't need
to specify the size of the input anymore)
model.add(layers.Dense(64, activation='relu'))
If you don't specify anything, no activation is applied (ie.
"linear" activation: a(x) = x)
model.add(layers.Dense(1,activation='sigmoid'))

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Example: breast cancer classification

model.compile(loss='binary_crossentropy', optimizer='adam',
metrics=[tf.keras.metrics.Precision()])

Fit the model to the training data and record events into a
History object.
history = model.fit(X_train, y_train, epochs=10, batch_size=1,
validation_split=0.2, verbose=1)

Model evaluation
test_loss,test_pr = model.evaluate(X_test,y_test)
print(test_pr)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Breast cancer: Plot Loss VS Epochs

Plot loss (y axis) and epochs (x axis) for training set and
validation set
plt.figure()
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.plot(history.epoch,
np.array(history.history['loss']),label='Train loss')
plt.plot(history.epoch,
np.array(history.history['val_loss']),label = 'Val loss')
plt.legend()
plt.show()

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

opt = keras.optimizers.Adam(lr=0.01)
model.compile(loss='binary_crossentropy',optimizer=opt, metrics=[...])

Setting learning rate and optimizer

Available optimizers:
https://keras.io/api/optimizers/

https://keras.io/api/optimizers/adam/

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Modifications to use Softmax (Suggested for Multi-class problems)

from tensorflow.keras.utils import to_categorical
y = to_categorical(y)

…
…
…

model.add(layers.Dense(2,activation='softmax'))

● Now our y is a matrix with a number of columns equal to the number of possible classes
● The column value is equal to 0 or 1 depending on the class associated to that example (row)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Example: Boston regression

from sklearn.datasets import load_boston
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt

from tensorflow.keras import models
from tensorflow.keras import layers

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Example: Boston regression

X, y = load_boston(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.20)

print("Training set dimensions (train_data):")
print(X_train.shape)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Example: Boston regression

model = models.Sequential()
model.add(layers.Dense(64,
activation='relu',input_shape=(X_train.shape[1],)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(1,activation='relu'))
model.compile(optimizer='rmsprop', loss='mse', metrics=['mse'])

history = model.fit(X_train, y_train, epochs=10, batch_size=1,
validation_split=0.2, verbose=1)
test_loss_score, test_mse_score = model.evaluate(test_data,
test_targets)

MSE
print(test_mse_score)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

https://keras.io/api/metrics/

Possible metrics

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Dropout is a simple layer you should add
○ model.add(layers.Dropout(VALUE between 0 and 1))

● Early stopping is a callback

from keras.callbacks import EarlyStopping (for new version try tf.keras)
es = EarlyStopping(monitor='val_loss',mode='min', verbose=1, patience= 10)
….
model.fit(X_train, Y_train,epochs=300,validation_data=(X_val, Y_val),callbacks=[es])

Dropout, early stopping and validation data

