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● Stanford CS229: Machine Learning — Andrew Ng, Stanford University
○ Free lectures on youtube: 

● Hands-On Machine Learning with Scikit-learn & Tensorflow - Aurèlien Gèron
○ Book (O’Reilly editor)

● Pattern Recognition and Machine Learning - Christopher Bishop
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● ML is the field of study that gives computers the ability to learn from data 
without being explicitly programmed

● A machine-learning system is trained rather than explicitly programmed

● It is a subset of the Artificial Intelligence

● Also known as statistical learning 

What is Machine learning (ML) ?
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● We are never certain something will happen, but we usually know (or can 
estimate rather well) how likely it is to happen or, at least, what is most likely 
to happen, based on the experience we have acquired throughout our life. 

● Experience in Machine learning means: Data in the form of examples

● Explore data to find patterns to understand the hidden laws that regulates the 
domain

Learning by experience
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● “A computer program is said to learn from experience E with respect to some 
class of tasks T and performance measure P, 
if its performance at tasks in T, as measured by P, improves with experience E”. 
(Mitchell 1997)

● Learning is our means of attaining the ability to perform automatically a task

● Task T : A task that is difficult to be solved with fixed programs written and 
designed by human beings

● Experience E: Collected data that describes the input of our ML system and the 
main source of information to exploit in order to learn

● Performance measure P: How good is the model? Is it able to solve the 
problem for real? Obviously depending on the task we have to choose a 
different measure

What do we mean by learning?
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● Machine learning tasks are usually described in terms of how the ML system 
should process an example

● An example is a collection of features that have been quantitatively or 
qualitative measured from some object or event that we want the machine 
learning system to process.

● Typically we represent an example as a vector x ∊ Rn where each entry xi of the 
vector is a different feature:
○ Features of an image are usually the values of the pixels in the image
○ We want to predict the price of an house on the basis of some characteristics (n° 

rooms, garden, position, floor, etc..) that are the features of each house example from 
which we learn.

What is an example?
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● Classification: The system is asked to specify which of k categories some input 
belongs to. For example:
○ Given a sentence (maybe a tweet) the system should determines if it express a 

positive or negative or neutral feeling (K=3)
○ Given an image where it can be a dog or a cat, we want to determine with the system 

which one is present (K=2)

● To solve this task, the learning algorithm is usually asked to produce a function                 
y= f(x): Rn → {1,...,k}
○ So the model takes an example x as input and after some processing f(x) it returns a 

value y that is one of the k categories the example x should belong to.

Many kinds of tasks: Classification

model (function) f[x1,x2,x3,..,xn]

Example Features
Category predicted by 
the model

Y =Cat
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● Regression: The system is asked to predict a numerical value given some 
input. For example:
○ Given the house features we want to predict the price. It is a pure numerical and 

unbounded value (at least positive unbounded).
○ Future price of securities (e.g., stocks, bonds,etc..)
○ Temperature of a city considering several factors (pulling, humidity, season,etc..)

● To solve this task, the learning algorithm is usually asked to produce a function                 
y= f(x): Rn → R
○ So the model takes an example x as input and after some processing f(x) it returns a 

value y that can be any real value!

Many kinds of tasks: Regression

model (function) f[x1,x2,x3,..,xn]

Example
Features

Numerical value 
predicted by the model

1.623.503 $
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● Clustering: The system is asked to group a set of objects in such a way that 
objects in the same group (called a cluster) are more similar to each other than 
to those in other groups.

● It is useful to discover latent properties or irregularities among data

● Usually data are unlabelled: We don’t know anything about what is the correct 
group the example should belong to (Unsupervised learning)

Many kinds of tasks: Clustering

x2

x1

x2

x1

Clustering

Dataset Result 
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● Several other tasks exist in Machine learning but they are all a composition or particular 
cases of a Classification or Regression tasks:

○ Transcription: Given an image, the model produces a text that describes the content
○ Machine translation
○ Anomaly detection
○ Imputation of missing values
○ Denoising
○ Density estimation
○ Synthesis

Other tasks
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● Experience is drawn from a dataset: A collection of many examples

● One common way of describing a dataset is with a design matrix X: 
○ A matrix X containing a different example in each row and where each column is a 

different feature

● Let’s consider the IRIS dataset (1936): It is a collection of measurements of different parts 
of 150 iris plants.

The Experience E

Sepal length Sepal Width Petal length Petal width

5.1 3.5 1.4 0.2

4.6 3.1 1.5 0.2

7.0 3.2 4.7 1.4

6.9 3.2 5.7 2.3

X =
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● Labels are fundamental to perform Supervised learning and to measure performance of 
our model

● We can assign to every example a label that say what is the correct value to be predicted 
in a regression task or the correct class (category) to be predicted in a classification task

Labels

Sepal length Sepal Width Petal length Petal width

5.1 3.5 1.4 0.2

4.6 3.1 1.5 0.2

7.0 3.2 4.7 1.4

6.9 3.2 5.7 2.3

X =

Class(label)

Setosa

Setosa

Versicolor

Virginica

Y =
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● Unsupervised learning

● Supervised learning 

● Semi-supervised learning

● Reinforcement Learning

Different ways of learning from examples
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● Unsupervised learning algorithms exploit a dataset containing many features, then learn 
useful properties of the structure of this dataset. Data are unlabelled

● Learning modifies the model such that it reflects some regularities and similarities that 
characterize the data (e.g., by grouping similar data or identifying regions in the pattern 
space where they are most likely to be located)

● A typical task with unsupervised algorithms is Clustering

Different ways of learning from examples

x2

x1

x2

x1

Unsupervised learning
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● Supervised learning algorithms: Each example includes an input pattern and the desired 
output (label) the model is expected to produce when the pattern is input. Learning modifies 
the model such that actual model outputs become more and more similar to the teaching 
inputs.

● Classification and regression are typical tasks since we have a label we want to learn to 
predict

● The violet dot line on the right is what we want to teach to the model: A separator function 
that is able to divide examples in the feature space! 

Different ways of learning from examples

x2

x1

Supervised learning

x2

x1
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● Semi-supervised learning algorithms: We have few labelled data so we increase our 
labelled data considering similarities and proximity (unsupervised) and then we exploit 
supervised learning algorithms

Different ways of learning from examples

x2

x1

Semi-supervised learning

x2

x1

● Reinforcement learning: Experience is not represented as a single dataset. Experience is 
collected by an agent who interacts with an environment, so there is a feedback loop 
between the learning system and its experiences
○ Trial and error mechanism with reward every time the decision is good and punishment 

otherwise
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● A model is mathematical tool that maps our examples (observations) X to the 
desired output y in the form y ~ F(X) where F() is our model

● F() is a parametric function and we call its parameters W

● So, a model is y=F(X ,W) and the goal of learning is to estimate these 
parameters W

● Machine learning algorithms provides different ways to get these parameters
○ Most of them are based on statistics and differential calculus

A model in supervised learning
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● Once we trained a model we might want to measure its performance for example the 
accuracy in classification task (proportion of correct predicted examples) or the average 
error in a regression task

● We want to measure performance on some data that have not been seen during 
training. Why? Because our goal is to build a model that is able to really understand the 
task and that is able to generalize

● For this reason we need a separate dataset called Test-set that we never used to train 
the model

The Performance measure P
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How to divide data - Training-set & Test-set

Full Dataset

Training data (~ 70/80%) Test set (~ 30/20%)

Training set

ML
Algorithm

ML Model Evaluation
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Example: House price prediction

Mq Price

50 80,000 $

75 100,000 $

125 130,000 $

35 50,000 $

200 220,000 $

60 90,000 $

100 110,000 $

● We want to build an intelligent 
system that helps to predict 
prices of houses in a city

● We only have two information: 
square meters and the price

● Square meters is what we call a 
feature

● Price represents our target 
output 
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Example: House price prediction

● X in this case is represented by 
square meters column

● y in this case is the price column

● Our goal is to identify a model that 
on the basis of these examples 
can understand the underlying rule 
of this domain
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● A split of data in training and test set to evaluate if the model is able to 
generalize
 

● A ML algorithm to build the model

● A metric for this evaluation

What we need ?
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Splitting data

Mq Price

50 80,000 $

75 100,000 $

125 130,000 $

35 50,000 $

200 220,000 $

60 90,000 $

100 110,000 $

● A suggested division is to use 
the 70 % of data in training and 
30 % for the test

Tr
ai

ni
ng

 s
et

Te
st

 s
et
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Dataset VS training set and test set

TRAINING SETDATASET
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● We want to find the most easy linear model that fits our data to get predictions 
on new data

● In our case let’s consider the equation of a line 
○ y = mx + q

■ Where m is the slope
■ q is the intercept

● If we write that equation as  y = w1 X + w0
○ y is our target output
○ X is our feature
○ W are the two parameters that we have to learn

● If X0=1 we can write the equation as Y = WT X

Linear model
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● We want w0 and w1 to have a line that has the minimum distance from our point

● Let’s call the output of our linear model y* = F(xi , W)
● We want the best W that minimize the following cost function:

○                            Loss function L

○ Where m is the number of the training examples

● To minimize this function we should compute the derivative (gradient) of L  with 
respect to W and find where this derivative is equal to 0

○ ∇wL = 0

Learning: An optimization problem
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Minimization of J(w)
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● We have a J(w0, w1) cost function and we want to find the parameters w0, w1 
that better minimizes J
○ We start with a random choice of W
○ Keep changing W to reduce J(W) until we hopefully end up at a minimum
○ Weights are updated simultaneously 

Gradient descent to minimize J(w)

Repeat until convergence {

}
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Gradient descent to minimize J(w)
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Gradient descent to minimize J(w)
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Gradient descent to minimize J(w)

● Actually, in order to simplify the computation of the gradient, the cost function 
is usually defined with an addition
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BREAK
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● Gradient descent uses the whole training set to compute gradients at every step. 
For this reason it is very slow when the training set is large

● Stochastic-Gradient Descent picks a random instance in the training set at every 
step and computes the gradients based only on that single instance. It is faster 
and it makes it possible to train on huge training sets (less memory required)

● Due its random nature SGD is less regular than Gradient Descent. Instead of 
gently decreasing until the minimum, the cost function will bounce up and down, 
decreasing only on average

● Final parameter values are good but no guarantees about optimality

● When the function is very irregular, SGD can help to jump from a local minima

Stochastic-Gradient Descent (SGD)
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● A traditional statistics tool that fits a straight line as a model

● Y = WT X
○ Where X is the feature matrix (examples) and Y is the column vector with 

the target values

● It is considered the first ML algorithm with the idea of learning something from 
data

● It computes the gradient of the loss and estimates the most performing line

● It is available in the python module scikit-learn (sklearn)

Linear Regression
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Example

from sklearn import linear_model
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
import numpy as np

X_train = [50,75,125,35,200]
X_test = [60,100]

y_train=[80000,100000,130000,50000,220000]
y_test=[90000,110000]
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Example

# Create linear regression object
regr = linear_model.LinearRegression()

# Train the model using the training sets
regr.fit(np.array(X_train).reshape(-1, 1), y_train)

# Make predictions using the testing set
y_pred = regr.predict(np.array(X_test).reshape(-1, 1))

# The coefficients
print('Coefficients: \n', regr.coef_)
print('Coefficients: \n', regr.intercept_)

# The mean squared error
print('Mean squared error: %.2f'% mean_squared_error(y_test, y_pred))
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Plot

plt.plot(X_train,y_train,"ro")
plt.plot(X_test,y_test,"bo")
X =np.concatenate([X_train,X_test])
y = [ x_i*regr.coef_ + regr.intercept_ for x_i in X]

plt.plot(X,y, color='orange', linewidth=3)
plt.show()
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● We are computing the mean square error on the test set trying to understand 
if our model is good or not

● What is the answer ?
○ MSE = 85318750.59
○ However MSE is not in the same unit of our samples
○ An idea: Root mean square error : 9236.814958911717

■ Is it good or not ?

How good is our model ? 
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● Data are purely invented so we cannot expect great results
○ Data are important, AI is not magic

● Maybe a polynomial or a non linear model could be better choices

● Dataset is too small
○ Data are important and we need the bigger dataset of observation that is 

possible
○ Overfitting and underfitting can be relevant with a small dataset

Some problems
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● A model ‘learnt from data’ is generally as good as the data from which it has 
been derived

● A good dataset should be
○ Large  
○ Correct (affected by noise as little as possible) 
○ Consistent (examples must not be contradictory and a pattern should 

exist) 
○ Well balanced (all classes adequately represented)

Good datasets for good models
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● The training and test data are generated by a probability distribution over 
datasets called the “data-generating process”

● We typically make a set of assumptions known collectively as the i.i.d 
assumptions: 
○ The examples in the dataset are independent from each other and that 

the training set and test set are identically distributed (I.I.D)

○ The training and test set are drawn from the same probability distribution. 
Commonly known also as the Ideal Generator hypothesis: It exist a 
probability distribution of every phenomenon and our dataset is only a set 
of observations we collected about this distribution. We hope that our 
dataset is representative of the entire distribution!

I.I.D Assumptions
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Overfitting VS underfitting

● Underfitting occurs when the model is not able to obtain a sufficiently low error value on the 
training-set: probably few data or the model is not the one correct to fit data.

● Overfitting occurs when the gap between training error and test error is too large

● We want to absolutely avoid overfitting (the learning algorithm memorizes the training set 
instead of learning general rules, the model performs well on the training data, but it does 
not generalize well). 
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● Suppose we have a probability distribution p(x,y) and we sample from it 
repeatedly to generate the training set and the test set.

● We train a model, and for some fixed value w:
a. If the expected training set error is exactly the same as the expected test set error 

we are ok since data are drawn (in theory) from the same distribution
b. If test set error is “greater” than training set error: probably overfitting 
c. If training error is big itself: probably underfitting

● The factors determining how well a machine learning algorithm will perform are its ability 
to:
a. Make the training error small
b. Make the gap between training and test error small

Overfitting VS underfitting
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● We can control whether a model is more likely to overfit or underfit by altering 
its capacity

● Model’s capacity is the ability of the model to fit a wide variety of functions
○ Models with low capacity may struggle to fit the training set (underfitting)
○ Models with high capacity can overfit by memorizing properties of the training set 

that are not useful for the test set and for generalization

● One way to control the capacity of a learning algorithm is by choosing its Hypothesis 
space: the set of functions that the learning algorithm is allowed to select as being the 
solution

● For example the Linear Regression algorithm has the set of all linear functions of its 
input as its hypothesis space:
○ E.g.,    y = b +w1x + w2x

2 +......+wnx
n 

Capacity of a model and Regularization
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● Example (From Bishop): We have a dataset of points (blue circle) generated 
from the function sin(2πx) + N (a random noise) . Our goal is to predict the 
value of t for some new value of x, without the knowledge of the green curve 
(sin(2πx)) and how this dataset has been generated

Model selection and Regularization

● Value of x is our single feature
● Value t is our target value to learn and 

predict

Question: It’s a regression task, but how can 
we select the order M of the polynomial ?

N= 10
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Model selection and Regularization

If you remember Taylor series..this 
result should seem to you…weird!
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Model selection and Regularization
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Model selection and Regularization

● For M=9, the training set error goes to zero but the test set error has become very 
large

○ This may seem paradoxical because a polynomial of given order contains all 
lower order polynomials as special cases

○ Furthermore, we might suppose that the best predictor of new data should be 
something similar to the function sin(2πx)
■ Remember that power series expansion of that function contains terms of 

all orders ( see mathematical analysis 1’s notes for more details), so we 
might expect that results should improve monotonically as we increase M

■ As M increases, the magnitude of coefficients typically gets larger
■ With M=9 the model is becoming increasingly tuned to the random noise 

on the target values
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Model selection and Regularization

● If we use a bigger dataset with N=100 samples the overfitting becomes less severe

● Rough heuristic: Number of data points should be no less than some multiple (say 5 or 10) of the 
number of parameters in the model.
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L2 Regularization

● To control the over-fitting phenomenon a common technique involves adding a 
penalty term to the cost function in order to discourage the coefficients from 
reaching large values

○ The simplest penalty terms is the sum of squares of all of the coefficients:

● This particular case of a quadratic regularizer is called Ridge regression 
and in the context of neural networks is known as Weight decay

● If we set the regularization parameter λ to a large value, when we minimize 
we force the weights to be very small
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Regularization

 In this case the over-fitting has been suppressed if λ is too much large we get again a poor 
representation
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The Validation set

● When we have to select a model or try different values of any hyperparameter to design our algorithm or 
to control the model’s capacity we cannot use the test-set!

● That’s why the test-set is necessary to measure the final generalization error of our model and our 
model has not to be designed “suited” to our test-set, otherwise we cannot measure the generalization 
error!

● So we introduce a third set called Validation set

● Just to recap:
○ Training Set: the dataset from which we learn
○ Validation set: A dataset we use to tune model’s parameters 
○ Test Set: A dataset which must include patterns describing the same problem which do not belong 

to the training set and that you MUST NEVER USE until the end of training and design of the 
model!

■ The test set is used to verify whether what has been learnt in the training phase can be 
correctly generalized on new data
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How to really use data

Full Dataset

Training data (~ 70/80%) Test set (~ 30/20%)

Training setValidation 
set

ML
Algorithm

ML Model Evaluation

Select parameters for the model
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● Scikit learn provides several public datasets to develop intelligent system but in 
particular for teaching reasons
○ from sklearn import datasets
○ Complete list: 

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets
○ https://scikit-learn.org/stable/datasets/

Scikit-learn datasets

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets
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Examples with several features
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Diabete

from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split

# Load the diabetes dataset
X, y = datasets.load_diabetes(return_X_y=True)

X_train, X_test, y_train, y_test = train_test_split(X, y, 
test_size=0.33)
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Diabete

# Create linear regression object
regr = linear_model.LinearRegression()

# Train the model using the training sets
regr.fit(X_train, y_train)

# Make predictions using the testing set
y_pred = regr.predict(X_test)

# The coefficients
print('Coefficients: \n', regr.coef_)
# The mean squared error
print('Mean squared error: %.2f'
      % mean_squared_error(y_test, y_pred))
from math import sqrt
rmse = sqrt(mean_squared_error(y_test, y_pred))
print(rmse)
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● If we want to fit a paraboloid to the data instead of a plane, we can combine 
the features in second-order polynomials, so that the model looks like this:

Polynomial regression

● It is still linear:

● We need to transform the input data matrix into a new data matrix of a given 
degree. From [x1,x2] to [ 1, x1 , x2 ,x1

2  , x1x2 , x2
2 ]

from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(degree=2)
X= poly.fit_transform(X)
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from sklearn import linear_model
regr = linear_model.Ridge(alpha=5.)

L2 regularization


